Материя Большая советская энциклопедия

Материя (лат. materia — вещество), "...философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них" (Ленин В. И., Полное собрание сочинений, 5 изд., т. 18, с. 131). М. — это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. М. включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. Весь окружающий нас мир представляет собой движущуюся М. в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Марксистско-ленинское понимание М. органически связано с диалектико-материалистическим решением основного вопроса философии; оно исходит из принципа материального единства мира, первичности М. по отношению к человеческому сознанию и принципа познаваемости мира на основе последовательного изучения конкретных свойств, связей и форм движения М. (см. Материализм).

В домарксистской философии и естествознании М. как философская категория часто отождествлялась с определенными конкретными её видами, например с веществом, атомами химических соединений, либо с таким свойством М., как масса, которая рассматривалась как мера количества М. В действительности же вещество охватывает не всю М., а только те объекты и системы, которые обладают ненулевой массой покоя. В мире существуют и такие виды М., которые не обладают массой покоя: электромагнитное поле и его кванты — фотоны, гравитационное поле (поле тяготения), нейтрино.

Сведение М. как объективной реальности к некоторым частным её состояниям и свойствам вызывало кризисные ситуации в истории науки. Так было в конце 19 — начале 20 веков, когда обнаружилась неправомерность отождествления М. с неделимыми атомами, веществом и в связи с этим некоторыми идеалистически настроенными физиками был сделан вывод, что "материя исчезла", "материализм отныне опровергнут" и так далее. Эти выводы были ошибочными, но преодоление методологического кризиса физики потребовало дальнейшей разработки диалектико-материалистического понимания М. и её основных свойств.

В литературе часто встречается термин "антиматерия", которым обозначают различные античастицы — антипротоны, антинейтроны, позитроны и другие, составленные из них микро- и макросистемы. Этот термин не точен, в действительности все указанные объекты — особые виды М., античастицы вещества, или антивещество. В мире может существовать и множество других, неизвестных ещё нам видов М. с необычными специфическими свойствами, но все они — элементы объективной реальности, существующей независимо от нашего сознания.

В рамках домарксистского материализма М. часто определялась как субстанция (основа) всех вещей и явлений в мире, и этот взгляд противостоял религиозно-идеалистическому пониманию мира, принимавшему в качестве субстанции божественную волю, абсолютный дух, человеческое сознание, которое отрывалось от мозга, подвергалось абсолютизации и обожествлению. Вместе с тем материальная субстанция часто понималась как первоматерия, сводилась к первичным и бесструктурным элементам, которые отождествлялись с неделимыми атомами. Считалось, что в то время как различные предметы и материальные образования могут возникать и исчезать, субстанция несотворима и неуничтожима, всегда стабильна в своей сущности; меняются лишь конкретные формы её бытия, количественного сочетания и взаимное расположение элементов и т. д.

В современной науке понятие субстанции претерпело радикальные изменения. Диалектический материализм признаёт субстанциальность М., но только во вполне определённом смысле: в плане материалистического решения основного вопроса философии и раскрытия природы различных свойств и форм движения тел. Именно М., а не сознание или воображаемый божеств, дух является субстанцией всех реально существующих в мире свойств, связей и форм движения, конечной основой всех духовных явлений. Никакое свойство и форма движения не могут существовать сами по себе, они всегда присущи определённым материальным образованиям, которые являются их субстратом. Понятие субстанции в этом смысле оказывается эквивалентно также понятию материального субстрата различных процессов и явлений в мире. Признание субстанциальности и абсолютности М. эквивалентно также принципу материального единства мира, который подтверждается всем историческим развитием науки и практики. Однако при этом важно учитывать, что сама М. существует лишь в виде бесконечного многообразия конкретных образований и систем. В структуре каждой из этих конкретных форм М. не существует какой-либо первичной, бесструктурной и неизменной субстанции, которая лежала бы в основе всех свойств М. Каждый материальный объект обладает неисчерпаемым многообразием структурных связей, способен к внутренним изменениям, превращениям в качественно иные формы М. "„Сущность” вещей или „субстанция”, — писал В. И. Ленин, — тоже относительны; они выражают только углубление человеческого познания объектов, и если вчера это углубление не шло дальше атома, сегодня — дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон так же неисчерпаем, как и атом, природа бесконечна ..." (там же, с. 277). Вместе с тем для прогресса научного знания и опровержения различных идеалистических концепций всегда важно выявление того материального субстрата, который лежит в основе исследуемых в данный период явлений, свойств и форм движения объективного мира. Так, исторически представляло огромное значение выявление субстрата тепловых, электрических, магнитных, оптических процессов, различных химических реакций и др. Это привело к развитию теории атомного строения вещества, теории электромагнитного поля, квантовой механики. Перед современной наукой стоит задача раскрытия структуры элементарных частиц, углублённого изучения материальных основ наследственности, природы сознания и др. Решение этих задач продвинет человеческое познание на новые, более глубокие структурные уровни М. "Мысль человека бесконечно углубляется от явления к сущности, от сущности первого, так сказать, порядка, к сущности второго порядка и т. д. без конца" (там же, т. 29, с. 227).

Материальные объекты всегда обладают внутренней упорядоченностью и системной организацией. Упорядоченность проявляется в закономерном движении и взаимодействии всех элементов материи, благодаря которому они объединяются в системы. Система — это внутренне упорядоченное множество взаимосвязанных элементов. Связь между элементами в системе является более прочной, существенной и внутренне необходимой, чем связь каждого из элементов с окружающей средой, с элементами других систем. Человеческое познание структурной организации М. относительно и изменчиво, зависит от постоянно расширяющихся возможностей эксперимента, наблюдений и научных теорий. Но оно конкретизирует и дополняет философское понимание М. как объективной реальности. Современной науке известны следующие типы материальных систем и соответствующие им структурные уровни М.: элементарные частицы и поля (электромагнитное, гравитационное и другие); атомы, молекулы, макроскопические тела различных размеров, геологические системы, Земля и другие планеты, звёзды, внутригалактические системы (диффузные туманности, звёздные скопления и другие), Галактика, системы галактик, Метагалактика, границы и структура которой пока ещё не установлены. Современные границы познания структуры М. простираются от 10-14 см до 1028 см (примерно 13 млрд. световых лет); но и внутри этого диапазона может существовать множество ещё неизвестных видов материи. В 60-х годах были открыты такие объекты, как квазары, пульсары и другие.

Живая М. и социально-организованная М. известны пока лишь на Земле. Их возникновение — результат естественного и закономерного саморазвития М., столь же неотделимого от её существования, как движение, структурность и другие свойства. Живая М. — вся совокупность организмов, способных к самовоспроизводству с передачей и накоплением в процессе эволюции генетической информации. Социально-организованная М. — высшая форма развития жизни, совокупность мыслящих и сознательно преобразующих действительность индивидуумов и сообществ различных уровней. Все эти виды М. также обладают системной организацией. В структуру социальных систем входят также и различные технические материальные системы, созданные людьми для реализации поставленных целей.

На каждом этапе познания было бы неправильно отождествлять философское понимание М. как объективной реальности с конкретными естественнонаучными представлениями о её структуре и формах. Тогда все другие ещё неизвестные, но реально существующие объекты и системы исключались бы из структуры М., что неверно, противоречит принципу материального единства мира. Это единство имеет множество конкретных форм проявления, последовательно раскрываемых наукой и практикой. Оно проявляется во всеобщей связи и взаимной обусловленности предметов и явлений в мире, в возможности взаимных превращений одних форм движущейся М. в другие, в связи и взаимных превращениях видов движения и энергии, в историческом развитии природы и возникновении более сложных форм М. и движения на основе относительно менее сложных форм. Материальное единство мира проявляется также во взаимной связи всех структурных уровней М., во взаимозависимости явлений микро- и мегамира (см. Космос). Оно находит своё выражение также в наличии у М. комплекса универсальных свойств и диалектических законов структурной организации, изменения и развития. К числу универсальных свойств М. относятся её несотворимость и неуничтожимость, вечность существования во времени и бесконечность в пространстве, неисчерпаемость её структуры. М. всегда присущи движение и изменение, закономерное саморазвитие, проявляющиеся в различных формах, превращение одних состояний в другие.

Всеобщими формами бытия М. являются пространство и время, которые не существуют вне М., как не может быть и материальных объектов, которые не обладали бы пространственно - временными свойствами. Универсальное свойство М. — детерминированность всех явлений, их зависимость от структурных связей в материальных системах и внешних воздействий, от порождающих их причин и условий (см. Причинность). Взаимодействие приводит к взаимному изменению тел (или их состояний) и отражению друг друга. Отражение, проявляющееся во всех процессах, зависит от структуры взаимодействующих систем и характера внешних воздействий. Историческое развитие свойства отражения приводит с прогрессом живой природы и общества к появлению высшей его формы — абстрактного и постоянно совершенствующегося мышления, через посредство которого М. как бы приходит к осознанию законов своего бытия и к своему собственному целенаправленному изменению. Универсальные свойства М. проявляются также во всеобщих законах её существования и развития: законе единства и борьбы противоположностей, взаимных переходов количественных и качественных изменений, законе причинности и других важнейших сторонах материального бытия, раскрываемых диалектическим материализмом и всей современной наукой.

Лит.: Энгельс Ф., Анти-Дюринг, отд. первый, Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20; его же, Диалектика природы, там же; Ленин В. И., Материализм и эмпириокритицизм, Полное собрание сочинений, 5 изд., т. 18; его же, Карл Маркс, там же, т. 26; Архипцев Ф. Т., Материя как философская категория, М., 1961; Диалектика в науках о неживой природе, М., 1964, раздел 2; Философские проблемы физики элементарных частиц, М., 1963; Мелюхин С. Т., Материя в её единстве, бесконечности и развитии, М., 1966; его же, Материальное единство мира в свете современной науки, М., 1967; Структура и формы материи, М., 1967; Кедров Б. М., Ленин и революция в естествознании XX века, М., 1969; Исследования по общей теории систем, М., 1969; Ленин и современное естествознание, М., 1969; Готт В. С., Философские вопросы современной физики, М., 1972.

  С. Т. Мелюхин.

Яндекс.СловариБольшая советская энциклопедия

 

Основной вопрос философии

Основной вопрос философии, вопрос об отношении сознания к бытию, духовного к материальному вообще. Составляет исходный пункт философского исследования, в силу чего то или иное решение этого вопроса (материалистическое, идеалистическое, дуалистическое) образует основу каждого философского учения. "Философы, — пишет Ф. Энгельс, — разделились на два больших лагеря сообразно тому, как отвечали они на этот вопрос. Те, которые утверждали, что дух существовал прежде природы..., — составили идеалистический лагерь. Те же, которые основным началом считали природу, примкнули к различным школам материализма" (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 21, с. 283).

При постановке О. в. ф. возникает вопрос не только о приоритете материального или духовного, но и относительно того, что считать материальным, а что духовным. Отсюда проистекает возможность многочисленных модификаций в решении О. в. ф. как в материализме, так и в идеализме. Гегель, например, принимает за первичное некое вне человека существующее мышление ("абсолютную идею"), А. Шопенгауэр исходит из представления о бессознательной космической воле, Э. Мах считает, что все вещи состоят из ощущений.

Многие домарксистские и немарксистские философы не считают вопрос об отношении духовного к материальному О. в. ф. Для Ф. Бэкона, например, О. в. ф. — это проблема овладения стихийными силами природы. Французские философ 20 в. А. Камю полагал, что О. в. ф. есть вопрос о том, стоит ли жить. Лишь немногие из философов, в первую очередь Гегель и Л. Фейербах, близко подошли к правильной формулировке О. в. ф. Вычленение же О. в. ф. и выяснение его роли в построении философских учений принадлежит Энгельсу (см. там же, с. 282—91). Энгельс рассматривал О. в. ф. как теоретический итог интеллектуальной истории человечества. Уже в религиозных верованиях первобытных людей содержится определенное представление об отношении психического к физическому, души к телу. Однако теоретическое рассмотрение этого отношения стало возможным лишь благодаря развитию абстрагирующего мышления, самонаблюдения, анализа. Исторически эта ступень интеллектуального развития совпадает с образованием противоположности между умственным и физическим трудом. В средние века, когда религия стала господствующей формой общественного сознания, О. в. ф., по словам Энгельса, "... принял более острую форму: создан ли мир богом или он существует от века" (там же, с. 283). Но лишь благодаря ликвидации духовной диктатуры клерикализма в ходе буржуазных революций О. в. ф. "... мог быть поставлен со всей резкостью, мог приобрести все свое значение..." (там же).

При формулировании О. в. ф. марксизм-ленинизм исходит из того, что понятия духовного и материального, субъективного и объективного (и соответственно субъективной реальности и объективной реальности) образуют дихотомию, охватывающую всё существующее, всё возможное, всё мыслимое; любое явление всегда можно отнести к духовному или материальному, субъективному или объективному. О. в. ф. заключает в себе, помимо вопроса об объективно существующем отношении психического и физического, духовного и материального вообще, также вопрос о познавательном отношении человеческого сознания к миру: "... Как относятся наши мысли об окружающем нас мире к самому этому миру? В состоянии ли наше мышление познавать действительный мир, можем ли мы в наших представлениях и понятиях о действительном мире составлять верное отражение действительности?" (там же). Отрицательный ответ на этот вопрос характерен для представителей скептицизма, агностицизма. Положительное решение этой проблемы принципиально различно в материализме и идеализме. Материалисты видят в познании отражение в человеческом сознании независимой от него реальности. Идеалисты же выступают против теории отражения, истолковывают познавательную деятельность то как комбинирование чувственных данных, то как конструирование объектов познания посредством априорных категорий, то как чисто логический процесс получения новых выводов из имеющихся аксиом или допущений. Историческая ограниченность домарксовского материализма (метафизичность, механицизм, идеалистическое понимание истории) сказывалась и в решении им О. в. ф. Эта ограниченность была преодолена лишь философией марксизма, которая понимает духовное как специфический продукт развития материи, распространяет диалектико-материалистическое решение О. в. ф. на познание общественной жизни. "Если материализм вообще объясняет сознание из бытия, а не обратно, то в применении к общественной жизни человечества материализм требовал объяснения общественного сознания из общественного бытия" (Ленин В. И., Полное собрание сочинений, 5 изд., т. 26, с. 55—56). Это положение составляет отправной пункт материалистического понимания истории. В решении О. в. ф. выявляются два главных философского направления — материализм и идеализм, борьба которых составляет содержание историко-философского процесса.

Лит.: Ойзерман Т. И., Главные философские направления, М., 1971; Основы марксистско-ленинской философии, 2 изд., М., 1973.

  Т. И. Ойзерман.

Материализм

Материализм (от латинского materialis — вещественный), одно из двух главных философских направлений, которое решает основной вопрос философии в пользу первичности материи, природы, бытия, физического, объективного и рассматривает сознание, мышление как свойство материи в противоположность идеализму, принимающему за исходное дух, идею, сознание, мышление, психическое, субъективное. Признание первичности материи означает, что она никем не сотворена, а существует вечно, что пространство и время суть объективно существующие формы бытия материи, что мышление неотделимо от материи, которая мыслит, что единство мира состоит в его материальности. Материалистическое решение второй стороны основного вопроса философии — о познаваемости мира — означает убеждение в адекватности отражения действительности в человеческом сознании, в познаваемости мира и его закономерностей. Слово "М." начали употреблять в 17 веке главным образом в смысле физических представлений о материи (Р. Бойль), а позднее в более общем, философском смысле (Г. В. Лейбниц)для противопоставления М. идеализму. Точное определение М. впервые дали К. Маркс и Ф. Энгельс, "философы разделились на два больших лагеря", сообразно тому, как отвечали они на вопрос об отношении мышления к бытию. "Те, которые утверждали, что дух существовал прежде природы... составили идеалистический лагерь. Те же, которые основным началом считали природу, примкнули к различным школам материализма" (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 21, с. 283). Такого понимания М. придерживался и В. И. Ленин (см. Полное собрание сочинений, 5 изд., т. 18, с. 98).

Противники М. употребляют неправильную терминологию для обозначения М. 1) Те, которые отрицают или ставят под сомнение существование чего-либо вне ощущений, называют М. "метафизикой" (поскольку М. признаёт существование внешнего мира). На этом же основании "метафизикой" именуются объективный идеализм и фидеизм, которые признают существование абсолютного духа или бога вне опыта отдельных людей; таким образом, здесь М. смешивается с идеализмом. 2) М. называют "реализмом", поскольку М. признаёт реальность внешнего мира. Отмечая, что термин "реализм" употребляется иногда в смысле противоположности идеализму, Ленин писал: "Я вслед за Энгельсом употребляю в этом смысле только слово: материализм, и считаю эту терминологию единственно правильной, особенно ввиду того, что слово „реализм” захватано позитивистами и прочими путаниками, колеблющимися между материализмом и идеализмом" (там же, с. 56). 3) Пытаясь принизить М. до уровня обыденного, философски неоформленного убеждения людей в реальности внешнего мира, враги М. именуют его "наивным реализмом". 4) Отождествляя М. в целом как направление с механистическим М., некоторые критики М. называют его "механицизмом". Энгельс отмечал, что ошибочное приравнивание "материалистического" и "механического" идёт от Гегеля, который хотел унизить М. эпитетом "механический". 5) Нередко слово "М." употребляется произвольно, в низменном смысле: "Под материализмом филистер понимает обжорство, пьянство, похоть и плотские наслаждения и тщеславие, корыстолюбие, скупость, алчность, погоню за барышом и биржевые плутни, короче — все те грязные пороки, которым он сам предается втайне" (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 21, с. 290).

Типология школ материализма. В литературе М. характеризуется с самых разных сторон, в его связях с другими социальными явлениями, что служит основанием для различных его классификаций.

1) Выделяются две исторические эпохи в прогрессивном развитии М., которым соответствуют домарксистский М. и марксистский М. Домарксистский М. охватывает все формы М., которые исторически предшествовали возникновению диалектического М. Те школы, которые появлялись после возникновения марксизма, строго говоря, не могут относиться к домарксистскому М., так как они не представляют собой дальнейшего развития М. и занимают особое место в истории М. Существуют два взгляда на хронологическую границу, разделяющую эпохи домарксистского и марксистского М.: согласно первому, эта граница — общая для всех стран и народов — середина 40-х годов 19 века, когда возник марксизм. Но в таком случае для тех стран, где рабочее движение развилось позднее (например, Россия, страны Востока), процесс развития домарксистского М., совершавшийся в пределах этих стран, пришлось бы искусственно разрывать на две обособленные стадии. Согласно второй точке зрения, домарксистским является М., распространённый в данной стране до проникновения в неё марксизма.

2) Единственно последовательным является марксистский М. В. И. Ленин называл К. Маркса "...основателем современного материализма, неизмеримо более богатого содержанием и несравненно более последовательного, чем все предыдущие формы материализма..." (Полное собрание сочинений, 5 изд. т. 18 с. 357).

Непоследовательность М. проявляется различным образом, а) Когда линия М. проводится в понимании природы, а общественные явления трактуются идеалистически. Так было, например, у французских материалистов 18 века, у Фейербаха, а также русских революционных демократов 19 века. Непоследовательный материалист-учёный может проводить линию М. в своей специальной области, а в философских вопросах защищать идеализм (см. Ф. Энгельс, в книге: Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 22, с. 305). б) Когда одна группа или сторона гносеологических вопросов решается с позиций М. (например, первая сторона основного вопроса философии), а другая — с позиций идеализма и агностицизма, в) Когда отрицаются или игнорируются всеобщая связь явлений и развитие природы, её саморазвитие. В частности, метафизический М. неспособный объяснить происхождение вещей и явлений мира, нередко приходит к идеалистической концепции "первого толчка".

3) По отношению к общественно-исторической практике различаются созерцательный М. и практически действенный М. "Главный недостаток всего предшествующего материализма — включая и фейербаховский — заключается в том, что предмет, действительность, чувственность берётся только в форме объекта, или в форме созерцания, а не как человеческая чувственная деятельность, практика, не субъективно" (Маркс К., там же, т. 3, с. 1). М., ставящий задачу не только объяснить мир, но изменить его, есть марксистский М.

4) С точки зрения метода мышления, которым пользуются материалисты, выделяются диалектический М. и метафизический М. Для диалектического М. характерны внутреннее единство, нераздельная слитность диалектики и материалистической теории познания. Метафизический М. имеет много разновидностей, зависящих от того, какая сторона действительности или процесса познания превращается в абсолют.

5) С точки зрения сознания противополагаются научный и вульгарный материализм. Научный М. видит качественное отличие психического от физического. Напротив, вульгарный М. (например, К. Фохт, Л. Бюхнер, Я. Молешотт) отождествляет сознание с материей. В понимании общественных явлений проявлением вульгарного М. является экономический М., противоположный историческому М. Историческому М. противостоят различные школы упрощённого М., дающие неправильное объяснение общественных явлений: а) антропологический М. (Л. Фейербах, отчасти Н. Г. Чернышевский) (см. Антропологизм); б) географический М. (см. Географическая школа в социологии); в) натуралистический М. (натурализм), который считает природу определяющим фактором развития общества.

6) С точки зрения отношения к различным ступеням, или сторонам, процесса познания, различались школы рационалистического и сенсуалистического М. (см. Рационализм и Сенсуализм).

7) Различаются сознательный М. и стихийный, или наивный, философски неоформленный М. Стихийный М. естествоиспытателей В. И. Ленин называл естественноисторическим М. Существует неразрывная связь стихийного М. естественников с философским М. как направлением. Естественноисторический М. есть М. "...наполовину бессознательный и стихийно-верный духу естествознания..." (Ленин В. И., Полное собрание сочинений, 5 изд., т. 18, с. 243).

8) Различные школы М. характеризуются по национально-географическим и хронологическим признакам. Обычно оба эти признака соединяются вместе, в результате чего образуются характеристики определённых школ М.: например, древнегреческий М., французский М. 18 века, русский М. 19 века и так далее. Иногда подобная характеристика даётся раздельно с учётом только одного из этих признаков, например: античный М. или М. 17 века (объединяющий английских, французских, голландских и других материалистов этого времени).

9) М. характеризуется по имени мыслителя, который его разрабатывал; например, выделяется М. Ф. Бэкона, Л. Фейербаха, Н. Г. Чернышевского и так далее. Этим подчёркиваются индивидуальные черты и особенности философского учения данного материалиста. Однако М. как общее мировоззрение нельзя отождествлять ни с какой-либо одной из его школ, ни с какими-либо естественнонаучными теориями.

Критерием истинности М. служит общественно-историческая практика. Именно на практике опровергаются ложные построения идеалистов и агностиков и неоспоримо доказывается истинность М. Чтобы успешно вести активную борьбу против идеализма, М. должен быть философски осознанным; в активной направленности М. против идеализма выражена его партийность. В. И. Ленин писал, что "...материализм включает в себя, так сказать, партийность, обязывая при всякой оценке события прямо и открыто становиться на точку зрения определённой общественной группы" (там же, т. 1, с. 419). В этой связи различают воинствующий М. и М., не ведущий активной борьбы против идеализма. Для воинствующих материалистов В. И. Ленин считал обязательным связь не только с философами-атеистами, но и с естествоиспытателями (см. там же, т. 45, с. 31).

В зависимости от того, как выражают сами материалисты свои взгляды, можно обнаружить прямой, открытый М. и стыдливый, прикрытый М. Последний может маскироваться даже под агностицизм в угоду так называемому общественному мнению в буржуазных странах (см. Ф. Энгельс, в книге: Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 22, с. 302—03).

В современных условиях воинствующий М., проводящий принцип партийности, есть атеистический М. Однако до 19 века передовые философские течения часто были вынуждены приспосабливаться к господствующей религиозной идеологии (пантеизм, деизм).

Виды материализма и их классовая основа. Под содержанием М. понимается совокупность его исходных посылок, его принципов. Под формой М. понимается общая его структура, определяемая в первую очередь методом мышления, в связи с которым и посредством которого разрабатывается и обосновывается данное течение М. Таким образом, в содержании М. заключено прежде всего то общее, что присуще всем школам и течениям М., в их противоположности идеализму и агностицизму, а с формой М. связано то особенное, что характеризует отдельные школы и течения М. Но такое разграничение вместе с тем относительно, условно. Форма М., воздействуя на его содержание, вносит в него существенные коррективы, благодаря чему, например, диалектический М. не только по форме, но и по содержанию качественно отличен от вульгарного М., от метафизического М. и всех других видов М., хотя имеет с ними то общее, что присуще всякому М. вообще. Если речь идёт о последовательных ступенях развития одного и того же вида М., то эти ступени рассматриваются как его этапы. Когда же происходит коренное изменение формы М., смена старой его формы новой, говорят, что меняется вид М. Изменение формы М. совершается в первую очередь под влиянием прогресса научного знания и общественного развития. М., писал Ф. Энгельс, "...подобно идеализму, прошел ряд ступеней развития. С каждым составляющим эпоху открытием даже в естественноисторической области материализм неизбежно должен изменять свою форму. А с тех пор, как и истории было дано материалистическое объяснение, здесь также открывается новый путь для развития материализма" (там же, т. 21, с. 286).

Каждое создающее эпоху в естествознании 20 века открытие — в физике (теория относительности, квантовая механика, использование атомной энергии, проникновение в глубь элементарных частиц и другие), в молекулярной биологии (раскрытие "механизма" биосинтеза, физико-химических основ наследственности и другие), в кибернетике, астрономии и других науках — требовало непрестанного изменения и развития формы и содержания диалектического М. путём его обогащения обобщениями новых естественнонаучных открытий. При этом сохраняются все принципы диалектического М., получающие подтверждение, развитие и конкретизацию.

Соответственно трём главным ступеням развития познания выделяются основные виды М.:

Наивный (или стихийный) М. древних греков и римлян, сочетавшийся у них с наивной диалектикой. Античная наука не расчленена на отдельные отрасли; она носит единый философский характер: все отрасли знания находятся под эгидой философии и подчинены ей.

Метафизический (или механический) М. 17—18 века. Наука быстро дифференцируется, расчленяясь на обособленные отрасли, которые выходят из-под опеки философии. Происходит разрыв между М. и диалектикой; в М. встречаются лишь элементы диалектики при господстве общего метафизического взгляда на мир.

Диалектический М., в котором М. и диалектика органически воссоединяются, так что устанавливается полное единство диалектики (учения о развитии), логики (учения о мышлении), теории познания. В науку проникает великая идея всеобщей связи и развития природы. Разобщённые до тех пор отдельные науки приводятся во взаимную связь не только между собой, но и с философией. Дальнейшая дифференциация наук совершается в единстве с их интеграцией.

Наряду с основными видами М. существовали промежуточные — переходные от одного основного вида М. к другому. В развитии М. внезапные перевороты всегда подготавливались постепенно. В качестве переходных выделялись следующие виды М.:

Материализм Древнего Востока, предшествовавший античному М. По большей части это был предматериализм, поскольку первые элементы М. в философских учениях Древнего Востока ещё не вполне отделились от мифологических представлений, не обособились от антропоморфизма и гилозоизма.

М. эпохи Возрождения соединял в себе черты наивного М. и наивной диалектики с первыми элементами метафизического взгляда на мир. Таким образом, он был, строго говоря, переходным между античным, наивным М. и ещё не сформировавшимся метафизическим М. В известном смысле такой характер носили некоторые ранние системы М. в 17 веке (например, Ф. Бэкон).

М., непосредственно предшествовавший диалектическому М. и частично развивавшийся параллельно ему. Он уже выходил за границы метафизического М., содержал элементы диалектики, но ещё не поднимался до диалектического М. и не распространял М. на общественные явления. Этот вид М. зарождается в 18 веке (например, Дж. Толанд) и начале 19 века (например, А. Сен-Симон и в особенности русские революционные демократы).

Особое место среди промежуточных видов М. занимают те его виды, которые зарождались в рамках господствующей религиозно-идеалистической идеологии, а потому не могли носить открыто материалистического характера. Сюда относятся материалистические тенденции в философии средневековья. Соответственно этому их можно было бы назвать переходной ступенью от схоластики и теологии к М. Исторически эта форма предшествовала М. эпохи Возрождения и подготовляла его формирование.

М. как философское учение на протяжении истории был, как правило, мировоззрением передовых, революционных классов. Однако было бы упрощенчеством связывать взгляды того или иного материалиста непосредственно с его классовой принадлежностью или общественно-политическими убеждениями. История М. свидетельствует, что такая связь носит опосредованный характер. Может случиться так, что представитель М. в данной исторической обстановке находится в лагере реакционных социальных сил, тогда как философ-идеалист выступает глашатаем прогрессивных сил общества. Но для раскрытия классовых основ и истоков М. в целом существенны не эти внутренне противоречивые ситуации, а общая направленность М. как философского учения, отражающего наиболее прогрессивные тенденции общественного развития — связь через естествознание с прогрессом производительных сил и борьбу против религии и идеализма.

Один и тот же вид М. (например, метафизический, механистический) в зависимости от места и времени может иметь различные классовые корни, выступая в одних условиях как прогрессивное направление в М., в других — как реакционное, в частности ревизионистское. Один и тот же общественный класс на одной и той же примерно ступени развития (например, революционная буржуазия, выступающая против феодализма и стремящаяся к политическому господству) в различных странах и в различных исторических условиях выбирает для себя различное философское облачение, причём не обязательно, чтобы им был всегда М. Непоследовательность М., выступающего в роли мировоззрения того или иного класса, находится в определённом соответствии с непоследовательностью самого этого класса, когда он выступает как революционная сила в общественном развитии. Последовательный до конца характер диалектического М. находится в прямой зависимости от последовательности, революционности рабочего класса, составной частью мировоззрения которого он является. Философские отступления от диалектического М. находятся в закономерной связи с отступлениями от революционного марксизма-ленинизма в практике, в политике.

Периоды и линии развития материализма. Закономерности развития М. условно можно разделить на две группы: а) те, которые составляют движущие силы развития М. и относятся к области практической — общественно-производственной и идеологической — деятельности и борьбы классов; б) те, которые выражают относительную самостоятельность развития М. как направления и связаны с логической последовательностью происхождения и преемственностью смены определённых его ступеней. Обе группы закономерностей находятся во взаимодействии между собой.

В истории М. осуществляется строгая преемственная связь последующих учений и систем М. с предыдущими; новые учения и системы М. развивались и возникали из ранее сложившихся. Наблюдаются 3 случая: 1) прямая связь, идущая от одной системы к другой; в этом случае последующая система представляет собой развитие, возможно одностороннее, предыдущей (подобно тому, как Т. Гоббс был систематизатором учения Ф. Бэкона). 2) Своеобразное раздвоение (дивергенция) линии развития, когда от одной системы берут начало две различные, а при известных условиях, прямо противоположные новые системы (например, от Дж. Локка к субъективному идеализму, идеалистическому сенсуализму Дж. Беркли и к французскому М., материалистическому сенсуализму); в этом случае возможна двоякая критика исходной системы со стороны обеих позднейших, в частности "справа", с позиций более открытого идеализма, и "слева", с позиций более последовательного М. (например, критика учения И. Канта). 3) Схождение и даже слияние сторон, содержавшихся у ранее обособленно развивавшихся философских систем (например, переход от картезианского М. и от сенсуализма Локка к французскому М. 18 века, а ещё резче — от идеалистической диалектики Гегеля и от метафизического М. Фейербаха к диалектическому М.). Такое слияние прогрессивных сторон у ранее изолированных и даже противостоящих философских течений происходит как органическая переработка содержания предшествующих течений с новой, единой и цельной точки зрения, но отнюдь не как эклектическое сложение и примирение до тех пор обособленных и даже враждебных друг другу философских направлений.

Существуют следующие магистральные пути или линии развития М.:

Основные линии развития М. Древнего Востока и античного М. Здесь главным в развитии наивного М. древности и предшествующих ему воззрений является процесс восхождения от весьма наглядных (вплоть до грубо антропоморфических) представлений о мире, природе, материи к обобщённым и абстрактным представлениям о свойствах и строении материи, которые были разработаны древними атомистами, выразившими высшую ступень первоначального М. Тенденция восхождения от конкретного к абстрактному в развитии М. обнаруживается повсюду: и в странах Древнего Востока, и в античном мире. В античном М. (как и во всей древнегреческой философии) в зародыше содержались все позднейшие течения М.: механистический М., метафизический М., диалектический М., вульгарный М. В универсальной системе Аристотеля синтетически соединились линии М., идущие от зачатков диалектического М. (Гераклит), от учения о четырёх неизменных корнях мироздания (Эмпедокл), которые у Аристотеля обрели способность к взаимопревращению, и от представления об апейроне, беспредельном материальном начале, лишённом чувственной вещественной конкретности (Анаксимандр). Наряду с этим в системе Аристотеля сильны элементы идеализма, хотя Аристотель и критиковал основы идеализма своего предшественника Платона. В целом он колебался между М. и идеализмом, склоняясь к М. главным образом в своей "Физике" (учении о природе). Наиболее ярко и четко борьба между М. и идеализмом в античной философии выступила как борьба противоположных тенденций, или линий, Демокрита и Платона (см. В. И. Ленин, Полное собрание сочинений, 5 изд., т. 18, с. 131).

Линии сохранения и накопления элементов и ростков М. в средневековой философии. В условиях господства религиозной идеологии М. был вытеснен идеализмом в средние века. Кроме социальных факторов, этому способствовали также причины гносеологического характера: неспособность М. древности выяснить отношение мышления к материи, раскрыть генезис сознания. Конечно, идеализм давал в принципе неверные ответы на основные гносеологические вопросы, однако он не сводил сознание к материи, подобно наивному М. В Западной Европе в учении Аристотеля официальная церковная идеология удержала всё реакционное и отбросила всё прогрессивное. Напротив, в странах арабского Востока, Средней Азии и Закавказья сохранялись элементы М. и была представлена линия М. того времени в трудах комментаторов Аристотеля и других мыслителей, например Ибн Сины. В рамках средневековой схоластики борьба М. и идеализма приняла форму борьбы между номинализмом и реализмом. В различных схоластических школах пробивались ростки материалистических воззрений (первое приближение к представлению о чувственном опыте у Р. Бэкона; поставленный Иоанном Дунсом Скотом вопрос: "не способна ли материя мыслить?" и др.). Однако всё это ещё не было сформировавшейся линией М.

Основные линии возрождения и развития М. в начале нового времени в Европе. В 15—16 веках в центре внимания представителей М. и возникающего естествознания стоял вопрос об опыте как единственном источнике знаний и критерии их правильности, в противовес схоластике и церковному догматизму, видевшим источник знаний в изучении сочинений древних авторитетов и священных книг, а критерий истины — в сличении текстов. Английский М. 17 века возник на основе эмпиризма, который перерос затем в сенсуализм. В конце 16—17 веке материалистические идеи естествознания (Г. Галилей, Ф. Бэкон, Р. Декарт) были направлены против скрытых (или абсолютных) качеств средневековых схоластов, на изучение реальных (в данном случае — механических) свойств и отношений вещей природы. Ранние системы М. в разных странах несут в себе значительные элементы наивного М. и наивной диалектики, в которых явно возрождаются некоторые черты античного М. Таков М. итальянского Возрождения 15—16 веков (Леонардо да Винчи, Дж. Бруно и другие), М. 17 века (Ф. Бэкон), который представлял материю качественно многообразной. Позднее эти представления вытесняются механистическими учениями, в которых материя трактуется абстрактно-механически (Галилей) или абстрактно-геометрически (Гоббс). Однако в отдельных случаях наивное, но в основном правильное представление о природе удерживалось дольше: например, представление о теплоте как о движении (Ф. Бэкон) и как о молекулярном движении (Бойль, Ньютон) в 17 веке, на смену которому в 18 веке приходит метафизическая концепция теплорода. В 18 веке параллельно тому, как углубляется метафизическая, механистическая идея разрыва материи и движения, в ряде систем М. усиливается стремление преодолеть этот разрыв: материалисты пытаются рассматривать тела природы как наделённые внутренней активностью, движением, хотя само это движение трактуется как механическое, а потому по самой своей сути как внешнее по отношению к материи (в картезианской школе, см. Картезианство, у некоторых представителей французского М., в атомно-кинетической концепции Ломоносова, в идее Толанда о неразделимости материи и движения, в динамическом атомизме Р. И. Бошковича и его последователя Дж. Пристли). Диалектика как цельное учение разрабатывалось лишь на почве немецкого идеализма, в системах же М. преобладали и, как правило, господствовали метафизика и механицизм, но были и элементы диалектики (Декарт, Дидро, Ломоносов, Пристли, Толанд, особенно Бошкович). Атомистические идеи возрождались и развивались почти всеми школами М.: как механическую атомистику их разрабатывали Галилей, Ф. Бэкон, Бойль, Ньютон, Гассенди, Спиноза, французские материалисты 18 века, Ломоносов.

Борьба М. с идеализмом развернулась сначала (в эпоху Возрождения) как борьба с господствующей религиозной идеологией. Позднее наиболее последовательные учения М. (Гоббс, французский М. 18 века — Ж. Ламетри, К. Гельвеций, Д. Дидро, П. Гольбах и другие) выступали и как атеистические учения. Английский М. конца 17 века оказался половинчатым в своём отношении к религии (попытки примирить науку и религию у Бойля и Ньютона). В 17—18 веках развёртывается борьба между вновь возникающими системами М. и идеализма: Гоббс — против идеализма Декарта, Дж. Беркли — против М. вообще, французский М. 18 века — против Беркли, Гегель — против французского М. 18 века и так далее. Борьба становится многосторонней, многоплановой и постепенно приобретает международный характер.

Основные линии развития домарксистского М. 19 века в России и Западной Европе. Главная магистральная линия развития М. в 19 веке проходила в направлении обогащения его диалектикой, которая достигла на почве идеализма наивысшего развития в философии Гегеля. Встала задача слияния диалектики с М. путём её материалистической переработки. Этот процесс был начат, но не доведён до конца представителями русского М. 19 века; продолжая материалистическую традицию М. В. Ломоносова и А. Н. Радищева, А. И. Герцен, В. Г. Белинский, Н. А. Добролюбов, Н. Г. Чернышевский сделали попытку соединить диалектику Гегеля с М.; в Германии Фейербах произвёл революцию, когда он отбросил абсолютную идею Гегеля, игравшую в гегелевской системе роль творца всего сущего, и вернулся снова к М. Но вместе с абсолютным идеализмом он отбросил и диалектику. Для всего домарксистского М. характерно вообще непонимание или неспособность добиться единства диалектики, логики и теории познания. У русских революционных демократов (вплоть до Чернышевского и его школы) единство М. и диалектики не было достигнуто именно в области логики и теории познания, хотя они и приближались к нему. Эту характерную особенность отметил В. И. Ленин, говоря, что основная беда старого (домарксовского) М. — неумение применить диалектику к теории отражения, к процессу познания. Все последующие отступления от диалектического М. шли также в значительной мере по этому же направлению (например, механисты).

Задачу соединения М. с диалектикой впервые решили К. Маркс и Ф. Энгельс. Теоретическими источниками служили им гегелевская диалектика и материализм Фейербаха, а через него и французский М. 18 века. Взаимопроникновение М. и диалектики в марксистской философии 19 века произвело революционный переворот в истории всей человеческой мысли, так как была создана подлинно научная теория природы, общества и мышления и метод познания и революционного преобразования действительности. Важнейшей стороной этого революционного переворота было распространение. М. на понимание общественной жизни, создание материалистического понимания истории (исторического материализма). Дальнейшее развитие диалектического и исторического М. в новой исторической обстановке связано с именем В. И. Ленина. Решающим оказывалось признание (Маркс, Энгельс, Ленин) или непризнание (непоследовательные материалисты) органического единства (тождества, совпадения) диалектики, логики и теории познания, опирающихся на принцип единства законов бытия и познания, мышления. У Гегеля такое единство осуществлялось на идеалистической основе. Невозможно было до конца соединить М. с диалектикой, если не решить вопроса об этом единстве на основе М. Все отступления от последовательного (диалектического, марксистского) М. связаны в первую очередь с тем, что М. и диалектика оказывались недостаточно органически слиты между собой.

Относительно истории возникновения и развития диалектического М. выдвигались неверные концепции. По поводу генезиса диалектического М. утверждалось, будто бы своё учение Маркс и Энгельс создали путём простого сложения диалектики Гегеля с фейербаховским М. В действительности свой метод Маркс характеризовал как прямо противоположный гегелевскому, из которого основоположники марксизма выделили только рациональное зерно. Точно так же из фейербаховского М. они выделили основное зерно, отбросив всю его метафизическую ограниченность. В итоге Маркс и Энгельс коренным образом переработали воззрения своих философских предшественников, создав качественно новое учение — диалектический М., в котором диалектика и М. пронизывают друг друга. Утверждалось также, будто бы Маркс и Энгельс вообще не исходили из гегелевской диалектики: философия Гегеля была объявлена аристократической реакцией на французский М. и на Великую французскую революцию. Тем самым отрицался факт теоретической подготовки диалектического М., резко обрывалась преемственная связь в историческом развитии мировой философской мысли, а сам марксизм изображался как появившийся внезапно, в стороне от основных путей развития мировой цивилизации.

В отношении дальнейшего развития диалектического М. утверждалось, будто у ленинского этапа в марксистской философии было два равноправных теоретических источника: учение Маркса и М. русских революционных демократов 19 века. Но очевидно, что М. последних резко отставал от марксистского М. в самом главном — в вопросе о единстве диалектики, логики и теории познания, не говоря уже об историческом М., а потому нельзя ставить в один ряд единственный теоретический источник ленинизма — учение Маркса — и какие-либо другие учения. Это не исключает того факта, что дальнейшее развитие марксистского М. не только допускает, но и требует постоянного его обогащения опытом рабочего движения и достижениями науки, культуры, в том числе и национальной культуры (включая философию) той страны, где происходит его развитие.

Диалектический М., будучи в самой основе противоположен идеализму, имеет и диаметрально противоположные ему гносеологические источники. Это: строгая объективность рассмотрения любых вещей и явлений; многосторонность рассмотрения изучаемого предмета, гибкость и подвижность понятий, в которых он отражается; неразрывная связь всех научных представлений (теорий, гипотез, законов, понятий), всех сторон научного познания с понятием материи, природы, обеспечивающая пользование ими как относительными (релятивными) и предупреждающая их превращение в абсолют. Раскрывая гносеологические корни М., Энгельс писал: "...материалистическое мировоззрение означает просто понимание природы такой, какова она есть, без всяких посторонних прибавлений..." (Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20, с. 513). Ленин, говоря об элементах диалектики и вместе с тем о гносеологических корнях М., подчёркивал

"... объективность рассмотрения (не примеры, не отступления, а вещь сама в себе)" (Полное собрание сочинений, 5 изд., т. 29, с. 202). "Всесторонняя, универсальная гибкость понятий, гибкость, доходящая до тождества противоположностей, — вот в чем суть. Эта гибкость примененная субъективно, эклектике и софистике. Гибкость, примененная объективно, т. е. отражающая всесторонность материального процесса и единство его, есть диалектика, есть правильное отражение вечного развития мира" (там же, с. 99).

М. играет важную методологическую роль во всех областях научного познания, применительно ко всем проблемам философии и теоретическим проблемам естественных и общественных наук. Он указывает науке правильный путь к познанию действительного мира. Когда наука сталкивается с каким-нибудь сложным, ещё нерешенным вопросом, то материалистическое мировоззрение заранее исключает его идеалистическое объяснение и ориентирует на поиски естественных законов развития, действительных ещё непознанных связей. "Материализм ясно ставит нерешенный еще вопрос и тем толкает его к разрешению, толкает к дальнейшим экспериментальным исследованиям" (там же, т. 18, с. 40). Только тогда, когда учёные, хотя бы бессознательно, идут по материалистическому пути в поисках ответа на нерешенные вопросы науки, они приходят к крупным открытиям, к конструктивному выходу из кажущегося тупика. Отвергая идею творения "из ничего", М. выдвигает требование искать естественные причины изучаемых явлений. Но выполнять последовательно это требование М. может, только опираясь на идею развития и всеобщей связи, то есть на диалектику. Весь ход развития науки и общества, международного революционного движения рабочего класса полностью подтверждает творческий характер и истинность высшей формы философского М. — диалектического и исторического М. (см. Диалектический материализм, Исторический материализм, Материя и литературу при этих статьях, а также статьи о материалистических учениях и об отдельных материалистах).

  Б. М. Кедров.

 

Масса (физ. величина)

Масса, физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).

Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения) тела: импульс p пропорционален скорости движения тела v,

p = mv .  (1)

Коэффициент пропорциональности — постоянная для данного тела величина m — и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики

f = ma .  (2)

Здесь М. — коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a. Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m1 : m2 : m3 ... = a1 : a2 : a3 ...; если одну из М. принять за единицу измерения, можно найти М. остальных тел.

В теории гравитации Ньютона М. выступает в другой форме — как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения:

,  (3)

где r — расстояние между телами, G — универсальная гравитационная постоянная, a m1 и m2 — М. притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли:

Р = m · g .  (4)

Здесь g = G · M / r2 — ускорение свободного падения в гравитационном поле Земли, а r " R — радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что М., создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная М. и гравитационная М. пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности (см. Тяготение). Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890—1906) прецизионная проверка равенства инертной и гравитационной М. была произведена Л. Этвешем, который нашёл, что М. совпадают с ошибкой ~ 10-8. В 1959—64 американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10-11, а в 1971 советские физики В. Б. Брагинский и В. И. Панов — до 10-12.

Принцип эквивалентности позволяет наиболее естественно определять М. тела взвешиванием.

Первоначально М. рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчёркивает аддитивность М. — М. тела равна сумме М. его частей. М. однородного тела пропорциональна его объёму, поэтому можно ввести понятие плотности — М. единицы объёма тела.

В классической физике считалось, что М. тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения М. (вещества), открытый М. В. Ломоносовым и А. Л. Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма М. исходных компонентов равна сумме М. конечных компонентов.

Понятие М. приобрело более глубокий смысл в механике спец. теории относительности А. Эйнштейна (см. Относительности теория), рассматривающей движение тел (или частиц) с очень большими скоростями — сравнимыми со скоростью света с " 3×1010 см/сек. В новой механике — она называется релятивистской механикой — связь между импульсом и скоростью частицы даётся соотношением:

  (5)

При малых скоростях (v << с) это соотношение переходит в Ньютоново соотношение р = mv. Поэтому величину m0 называют массой покоя, а М. движущейся частицы m определяют как зависящий от скорости коэфф. пропорциональности между р и v:

  (6)

Имея в виду, в частности, эту формулу, говорят, что М. частицы (тела) растет с увеличением её скорости. Такое релятивистское возрастание М. частицы по мере повышения её скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. М. покоя m0 (М. в системе отсчёта, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определёнными значениями m0, присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение М. из уравнения движения (2) не эквивалентно определению М. как коэффициент пропорциональности между импульсом и скоростью частицы, так как ускорение перестаёт быть параллельным вызвавшей его силе и М. получается зависящей от направления скорости частицы.

Согласно теории относительности, М. частицы m связана с её энергией Е соотношением:

  (7)

М. покоя определяет внутреннюю энергию частицы — так называемую энергию покоя Е0 = m0c2. Таким образом, с М. всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения М. и закона сохранения энергии — они слиты в единый закон сохранения полной (то есть включающей энергию покоя частиц) энергии. Приближённое разделение на закон сохранения энергии и закон сохранения М. возможно лишь в классической физике, когда скорости частиц малы (v << с) и не происходят процессы превращения частиц.

В релятивистской механике М. не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ, который соответствует М. Dm = DЕ/с2. Поэтому М. составной частицы меньше суммы М. образующих его частиц на величину DЕ/с2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, М. дейтрона (d) меньше суммы М. протона (p) и нейтрона (n); дефект М. Dm связан с энергией Еg гамма-кванта (g), рождающегося при образовании дейтрона: p + n ® d + g, Еg = Dm · c2. Дефект М., возникающий при образовании составной частицы, отражает органическую связь М. и энергии.

Единицей М. в СГС системе единиц служит грамм, а в Международной системе единиц СИ — килограмм. М. атомов и молекул обычно измеряется в атомных единицах массы. М. элементарных частиц принято выражать либо в единицах М. электрона me, либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, М. электрона составляет 0,511 Мэв, М. протона — 1836,1 me, или 938,2 Мэв и т. д.

Природа М. — одна из важнейших нерешенных задач современной физики. Принято считать, что М. элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике М. тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела Rгр = 2GM/c2. Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R £ Rгр. Звёзды таких размеров будут невидимы; поэтому их назвали "чёрными дырами". Такие небесные тела должны играть важную роль во Вселенной.

Лит.: Джеммер М., Понятие массы в классической и современной физике, перевод с английского, М., 1967; Хайкин С. Э., физические основы механики, М., 1963; Элементарный учебник физики, под редакцией Г. С. Ландсберга, 7 изд., т. 1, М., 1971.

  Я. А. Смородинский.

Электромагнитное поле

Электромагнитное поле, особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами (см. Поля физические). Э. п. в вакууме характеризуется вектором напряжённости электрического поля Е и магнитной индукцией В, которые определяют силы, действующие со стороны поля на неподвижные и движущиеся заряженные частицы. Наряду с векторами Е и В, измеряемыми непосредственно, Э. п. может характеризоваться скалярным j и векторным А потенциалами, которые определяются неоднозначно, с точностью до градиентного преобразования (см. Потенциалы электромагнитного поля). В среде Э. п. характеризуется дополнительно двумя вспомогательными величинами: напряжённостью магнитного поля Н и электрической индукцией D (см. Индукция электрическая и магнитная).

Поведение Э. п. изучает классическая электродинамика, в произвольной среде оно описывается Максвелла уравнениями, позволяющими определить поля в зависимости от распределения зарядов и токов. Микроскопические Э. п., созданные отд. элементарными частицами, характеризуются напряжённостями микроскопических полей: электрического поля е и магнитного h. Их средние значения связаны с макроскопическими характеристиками Э. п. следующим образом: , . Микроскопические поля удовлетворяют Лоренца — Максвелла уравнениям.

Э. п. неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами; при ускоренном движении частиц Э. п. "отрывается" от них и существует независимо в форме электромагнитных волн.

Порождение Э. п. переменным магнитным полем и магнитного поля — переменным электрическим приводит к тому, что электрические и магнитные поля не существуют обособленно, независимо друг от друга. Компоненты векторов, характеризующих Э. п., образуют, согласно относительности теории, единую физ. величину — тензор Э. п., компоненты которого преобразуются при переходе от одной инерциальной системы отсчёта к другой в соответствии с Лоренца преобразованиями.

При больших частотах Э. п. становятся существенными его квантовые (дискретные) свойства. В этом случае классическая электродинамика неприменима и Э. п. описывается квантовой электродинамикой.

  Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики, т. 2); Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, в. 5—7, М., 1966—67; Ландау Л. Д., Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959.

  Г. Я. Мякишев.

Тяготение

Тяготение, гравитация, гравитационное взаимодействие, универсальное взаимодействие между любыми видами материи. Если это взаимодействие относительно слабое и тела движутся медленно (по сравнению со скоростью света), то справедлив закон всемирного тяготения Ньютона. В общем случае Т. описывается созданной А. Эйнштейном общей теорией относительности. Эта теория описывает Т. как воздействие материи на свойства пространства и времени; в свою очередь, эти свойства пространства-времени влияют на движение тел и др. физические процессы. Таким образом, современная теория Т. резко отличается от теории других видов взаимодействия — электромагнитного, сильного и слабого.

Теория тяготения Ньютона

Первые высказывания о Т. как всеобщем свойстве тел относятся к античности. Так, Плутарх писал: "Луна упала бы на Землю как камень, чуть только уничтожилась бы сила её полёта".

В 16 и 17 вв. в Европе возродились попытки доказательства существования взаимного тяготения тел. Основатель теоретической астрономии И. Кеплер говорил, что "тяжесть есть взаимное стремление всех тел". Итальянский физик Дж. Борелли пытался при помощи Т. объяснить движение спутников Юпитера вокруг планеты. Однако научное доказательство существования всемирного Т. и математическая формулировка описывающего его закона стали возможны только на основе открытых И. Ньютоном законов механики. Окончательная формулировка закона всемирного Т. была сделана Ньютоном в вышедшем в 1687 главном его труде "Математические начала натуральной философии". Ньютона закон тяготения гласит, что две любые материальные частицы с массами mА и mВ притягиваются по направлению друг к другу с силой F, прямо пропорциональной произведению масс и обратно пропорциональной квадрату расстояния r между ними:

 (1)

(под материальными частицами здесь понимаются любые тела при условии, что их линейные размеры много меньше расстояния между ними; см. Материальная точка). Коэффициент пропорциональности G называется постоянной тяготения Ньютона, или гравитационной постоянной. Численное значение G было определено впервые английским физиком Г. Кавендишем (1798), измерившим в лаборатории силы притяжения между двумя шарами. По современным данным, G = (6,673 ± 0,003)×10-8 см3×сек2.

Следует подчеркнуть, что сама форма закона Т. (1) (пропорциональность силы массам и обратная пропорциональность квадрату расстояния) проверена с гораздо большей точностью, чем точность определения коэффициента G. Согласно закону (1), сила Т. зависит только от положения частиц в данный момент времени, то есть гравитационное взаимодействие распространяется мгновенно. Другой важной особенностью закона тяготения Ньютона является тот факт, что сила Т., с которой данное тело А притягивает другое тело В, пропорциональна массе тела В. Но так как ускорение, которое получает тело В, согласно второму закону механики, обратно пропорционально его массе, то ускорение, испытываемое телом В под влиянием притяжения тела А, не зависит от масса тела В. Это ускорение носит название ускорения свободного падения. (Более подробно значение этого факта обсуждается ниже.)

Для того чтобы вычислить силу Т., действующую на данную частицу со стороны многих др. частиц (или от непрерывного распределения вещества в некоторой области пространства), надо векторно сложить силы, действующие со стороны каждой частицы (проинтегрировать в случае непрерывного распределения вещества). Таким образом, в ньютоновской теории Т. справедлив принцип суперпозиции. Ньютон теоретически доказал, что сила Т. между двумя шарами конечных размеров со сферически симметричным распределением вещества выражается также формулой (1), где mА и mВ полные массы шаров, а r — расстояние между их центрами.

При произвольном распределении вещества сила Т., действующая в данной точке на пробную частицу, может быть выражена как произведение массы этой частицы на вектор g, называемый напряжённостью поля Т. в данной точке. Чем больше величина (модуль) вектора g, тем сильнее поле Т.

Из закона Ньютона следует, что поле Т. — потенциальное поле, то есть его напряжённость g может быть выражена как градиент некоторой скалярной величины j, называемым гравитационным потенциалом:

g = —grad j. (2)

Так, потенциал поля Т. частицы массы m может быть записан в виде:

. (3)

Если задано произвольное распределение плотности вещества в пространстве, r = r(r), то теория потенциала позволяет вычислить гравитационный потенциал j этого распределения, а следовательно, и напряжённость гравитационного поля g во всём пространстве. Потенциал j определяется как решение Пуассона уравнения.

Dj = 4pGr, (4)

где D — Лапласа оператор.

Гравитационный потенциал какого-либо тела или системы тел может быть записан в виде суммы потенциалов частичек, слагающих тело или систему (принцип суперпозиции), то есть в виде интеграла от выражений (3):

  (4a)

Интегрирование производится по всей массе тела (или системы тел), r — расстояние элемента массы dm от точки, в которой вычисляется потенциал. Выражение (4a) является решением уравнения Пуассона (4). Потенциал изолированного тела или системы тел определяется, вообще говоря, неоднозначно. Так, например, к потенциалу можно прибавлять произвольную константу. Если потребовать, чтобы вдали от тела или системы, на бесконечности, потенциал равнялся нулю, то потенциал определяется решением уравнения Пуассона однозначно в виде (4a).

Ньютоновская теория Т. и ньютоновская механика явились величайшим достижением естествознания. Они позволяют описать с большой точностью обширный круг явлений, в том числе движение естественных и искусственных тел в Солнечной системе, движения в др. системах небесных тел: в двойных звёздах, в звёздных скоплениях, в галактиках. На основе теории тяготения Ньютона было предсказано существование неизвестной ранее планеты Нептун и спутника Сириуса и сделаны многие др. предсказания, впоследствии блестяще подтвердившиеся. В современной астрономии закон тяготения Ньютона является фундаментом, на основе которого вычисляются движения и строение небесных тел, их эволюция, определяются массы небесных тел. Точное определение гравитационного поля Земли позволяет установить распределение масс под её поверхностью (гравиметрическая разведка) и, следовательно, непосредственно решать важные прикладные задачи. Однако в некоторых случаях, когда поля Т. становятся достаточно сильными, а скорости движения тел в этих полях не малы по сравнению со скоростью света, Т. уже не может быть описано законом Ньютона.

Необходимость обобщения закона тяготения Ньютона Теория Ньютона предполагает мгновенное распространение Т. и уже поэтому не может быть согласована со специальной теорией относительности (см. Относительности теория), утверждающей, что никакое взаимодействие не может распространяться со скоростью, превышающей скорость света в вакууме. Нетрудно найти условия, ограничивающие применимость ньютоновской теории Т. Так как эта теория не согласуется со специальной теорией относительности, то её нельзя применять в тех случаях, когда гравитационные поля настолько сильны, что разгоняют движущиеся в них тела до скорости порядка скорости света с. Скорость, до которой разгоняется тело, свободно падающее из бесконечности (предполагается, что там оно имело пренебрежимо малую скорость) до некоторой точки, равна по порядку величины корню квадратному из модуля гравитационного потенциала j в этой точке (на бесконечности j считается равным нулю). Таком образом, теорию Ньютона можно применять только в том случае, если

|j| << c2. (5)

В полях Т. обычных небесных тел это условие выполняется: так, на поверхности Солнца |j|/c2 " 4×10-6, а на поверхности белых карликов — порядка 10-3.

Кроме того, ньютоновская теория неприменима и к расчёту движения частиц даже в слабом поле Т., удовлетворяющем условию (5), если частицы, пролетающие вблизи массивных тел, уже вдали от этих тел имели скорость, сравнимую со скоростью света. В частности, теория Ньютона неприменима для расчёта траектории света в поле Т. Наконец, теория Ньютона неприменима при расчётах переменного поля Т., создаваемого движущимися телами (например, двойными звёздами) на расстояниях r > l = сt, где t — характерное время движения в системе (например, период обращения в системе двойной звезды). Действительно, согласно ньютоновской теории, поле Т. на любом расстоянии от системы определяется формулой (4a), то есть положением масс в тот же момент времени, в который определяется поле. Это означает, что при движении тел в системе изменения гравитационного поля, связанные с перемещением тел, мгновенно передаются на любое расстояние r. Но, согласно специальной теории относительности, изменение поля, происходящее за время t, не может распространяться со скоростью, большей с.

Обобщение теории Т. на основе специальной теории относительности было сделано А. Эйнштейном в 1915—16. Новая теория была названа её творцом общей теорией относительности.

Принцип эквивалентности Самой важной особенностью поля Т., известной в ньютоновской теории и положенной Эйнштейном в основу его новой теории, является то, что Т. совершенно одинаково действует на разные тела, сообщая им одинаковые ускорения независимо от их массы, химического состава и др. свойств. Так, на поверхности Земли все тела падают под влиянием её поля Т. с одинаковым ускорением — ускорением свободного падения. Этот факт был установлен опытным путём ещё Г. Галилеем и может быть сформулирован как принцип строгой пропорциональности гравитационной, или тяжёлой, массы mT, определяющей взаимодействие тела с полем Т. и входящей в закон (1), и инертной массы mИ, определяющей сопротивление тела действующей на него силе и входящей во второй закон механики Ньютона (см. Ньютона законы механики). Действительно, уравнение движения тела в поле Т. записывается в виде:

mИа = F = mTg, (6)

где а — ускорение, приобретаемое телом под действием напряжённости гравитационного поля g. Если mИ пропорциональна mТ и коэффициент пропорциональности одинаков для любых тел, то можно выбрать единицы измерения так, что этот коэффициент станет равен единице, mИ = mТ; тогда они сокращаются в уравнении (6), и ускорение а не зависит от массы и равно напряжённости g поля Т., а = g, в согласии с законом Галилея. (О современном опытном подтверждении этого фундаментального факта см. ниже.)

Таким образом, тела разной массы и природы движутся в заданном поле Т. совершенно одинаково, если их начальные скорости были одинаковыми. Этот факт показывает глубокую аналогию между движением тел в поле Т. и движением тел в отсутствие Т., но относительно ускоренной системы отсчёта. Так, в отсутствие Т. тела разной массы движутся по инерции прямолинейно и равномерно. Если наблюдать эти тела, например, из кабины космического корабля, который движется вне полей Т. с постоянным ускорением за счёт работы двигателя, то, естественно, по отношению к кабине все тела будут двигаться с постоянным ускорением, равным по величине и противоположным по направлению ускорению корабля. Движение тел будет таким же, как падение с одинаковым ускорением в постоянном однородном поле Т. Силы инерции, действующие в космическом корабле, летящем с ускорением, равным ускорению свободного падения на поверхности Земли, неотличимы от сил гравитации, действующих в истинном поле Т. в корабле, стоящем на поверхности Земли. Следовательно, силы инерции в ускоренной системе отсчёта (связанной с космическим кораблём) эквивалентны гравитационному полю. Этот факт выражается принципом эквивалентности Эйнштейна. Согласно этому принципу, можно осуществить и процедуру обратную описанной выше имитации поля Т. ускоренной системой отсчёта, а именно, можно "уничтожить" в данной точке истинное гравитационное поле введением системы отсчёта, движущейся с ускорением свободного падения. Действительно, хорошо известно, что в кабине космического корабля, свободно (с выключенными двигателями) движущегося вокруг Земли в её поле Т., наступает состояние невесомости — не проявляются силы тяготения. Эйнштейн предположил, что не только механическое движение, но и вообще все физические процессы в истинном поле Т., с одной стороны, и в ускоренной системе в отсутствие Т., с другой стороны, протекают по одинаковым законам. Этот принцип получил название "сильного принципа эквивалентности" в отличие от "слабого принципа эквивалентности", относящегося только к законам механики.

Основная идея теории тяготения Эйнштейна

Рассмотренная выше система отсчёта (космический корабль с работающим двигателем), движущаяся с постоянным ускорением в отсутствие поля Т., имитирует только однородное гравитационное поле, одинаковое по величине и направлению во всём пространстве. Но поля Т., создаваемые отдельными телами, не таковы. Для того чтобы имитировать, например, сферическое поле Т. Земли, нужны ускоренные системы с различным направлением ускорения в различных точках. Наблюдатели в разных системах, установив между собой связь, обнаружат, что они движутся ускоренно друг относительно друга, и тем самым установят отсутствие истинного поля Т. Таким образом, истинное поле Т. не сводится просто к введению ускоренной системы отсчёта в обычном пространстве, или, говоря точнее, в пространстве-времени специальной теории относительности. Однако Эйнштейн показал, что если, исходя из принципа эквивалентности, потребовать, чтобы истинное гравитационное поле было эквивалентно локальным соответствующим образом ускоренным в каждой точке системам отсчёта, то в любой конечной области пространство-время окажется искривленным — неевклидовым. Это означает, что в трёхмерном пространстве геометрия, вообще говоря, будет неевклидовой (сумма углов треугольника не равна p, отношение длины окружности к радиусу не равно 2p и т.д.), а время в разных точках будет течь по-разному. Таким образом, согласно теории тяготения Эйнштейна, истинное гравитационное поле является не чем иным, как проявлением искривления (отличия геометрии от евклидовой) четырёхмерного пространства-времени.

Следует подчеркнуть, что создание теории тяготения Эйнштейна стало возможным только после открытия неевклидовой геометрии русским математиком Н. И. Лобачевским, венгерским математиком Я. Больяй, немецкими математиками К. Гауссом и Б. Риманом.

В отсутствие Т. движение тела по инерции в пространстве-времени специальной теории относительности изображается прямой линией, или, на математическом языке, экстремальной (геодезической) линией. Идея Эйнштейна, основанная на принципе эквивалентности и составляющая основу теории Т., заключается в том, что и в поле Т. все тела движутся по геодезическим линиям в пространстве-времени, которое, однако, искривлено, и, следовательно, геодезические линии уже не прямые.

Массы, создающие поле Т., искривляют пространство-время. Тела, которые движутся в искривленном пространстве-времени, и в этом случае движутся по одним и тем же геодезическим линиям независимо от массы или состава тела. Наблюдатель воспринимает это движение как движение по искривленным траекториям в трёхмерном пространстве с переменной скоростью. Но с самого начала в теории Эйнштейна заложено, что искривление траектории, закон изменения скорости — это свойства пространства-времени, свойства геодезических линий в этом пространстве-времени, а следовательно, ускорение любых различных тел должно быть одинаково и, значит, отношение тяжёлой массы к инертной [от которого зависит ускорение тела в заданном поле Т., см. формулу (6)] одинаково для всех тел, и эти массы неотличимы. Таким образом, поле Т., по Эйнштейну, есть отклонение свойств пространства-времени от свойств плоского (не искривлённого) многообразия специальной теории относительности.

Вторая важная идея, лежащая в основе теории Эйнштейна, — утверждение, что Т., то есть искривление пространства-времени, определяется не только массой вещества, слагающего тело, но и всеми видами энергии, присутствующими в системе. Эта идея явилась обобщением на случай теории Т. принципа эквивалентности массы (m) и энергии (Е) специальной теории относительности, выражающейся формулой Е = mс2. Согласно этой идее, Т. зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного поля и всех др. физических полей.

Наконец, в теории тяготения Эйнштейна обобщается вывод специальной теории относительности о конечной скорости распространения всех видов взаимодействия. Согласно Эйнштейну, изменения гравитационного поля распространяются в вакууме со скоростью с.

Уравнения тяготения Эйнштейна

В специальной теории относительности в инерциальной системе отсчёта квадрат четырёхмерного "расстояния" в пространстве-времени (интервала ds) между двумя бесконечно близкими событиями записывается в виде:

ds2= (cdt)2 - dx2- dy2 - dz2 (7)

где t — время, х, у, z — прямоугольные декартовы (пространственные) координаты. Эта система координат называется галилеевой. Выражение (7) имеет вид, аналогичный выражению для квадрата расстояния в евклидовом трёхмерном пространстве в декартовых координатах (с точностью до числа измерений и знаков перед квадратами дифференциалов в правой части). Такое пространство-время называют плоским, евклидовым, или, точнее, псевдоевклидовым, подчёркивая особый характер времени: в выражении (7) перед (cdt)2 стоит знак "+", в отличие от знаков "—" перед квадратами дифференциалов пространственных координат. Таким образом, специальная теория относительности является теорией физических процессов в плоском пространстве-времени (пространстве-времени Минковского; см. Минковского пространство).

В пространстве-времени Минковского не обязательно пользоваться декартовыми координатами, в которых интервал записывается в виде (7). Можно ввести любые криволинейные координаты. Тогда квадрат интервала ds2 будет выражаться через эти новые координаты общей квадратичной формой:

ds2 = gikdx idx k (8)

(i, k = 0, 1, 2, 3), где x 1, x 2, x 3 произвольные пространств, координаты, x0 = ct — временная координата (здесь и далее по дважды встречающимся индексам производится суммирование). С физической точки зрения переход к произвольным координатам означает и переход от инерциальной системы отсчёта к системе, вообще говоря, движущейся с ускорением (причём в общем случае разным в разных точках), деформирующейся и вращающейся, и использование в этой системе не декартовых пространственных координат. Несмотря на кажущуюся сложность использования таких систем, практически они иногда оказываются удобными. Но в специальной теории относительности всегда можно пользоваться и галилеевой системой, в которой интервал записывается особенно просто. [В этом случае в формуле (8) gik= 0 при i ¹ k, g00 = 1, gii = —1 при i = 1, 2, 3.]

В общей теории относительности пространство-время не плоское, а искривленное. В искривленном пространстве-времени (в конечных, не малых, областях) уже нельзя ввести декартовы координаты, и использование криволинейных координат становится неизбежным. В конечных областях такого искривленного пространства-времени ds2 записывается в криволинейных координатах в общем виде (8). Зная gik как функции четырёх координат, можно определить все геометрические свойства пространства-времени. Говорят, что величины gik определяют метрику пространства-времени, а совокупность всех gik называют метрическим тензором. С помощью gik вычисляются темп течения времени в разных точках системы отсчёта и расстояния между точками в трёхмерном пространстве. Так, формула для вычисления бесконечно малого интервала времени dt по часам, покоящимся в системе отсчёта, имеет вид:

При наличии поля Т. величина g00 в разных точках разная, следовательно, темп течения времени зависит от поля Т. Оказывается, что чем сильнее поле, тем медленнее течёт время по сравнению с течением времени для наблюдателя вне поля.

Математическим аппаратом, изучающим неевклидову геометрию (см. Риманова геометрия) в произвольных координатах, является тензорное исчисление. Общая теория относительности использует аппарат тензорного исчисления, её законы записываются в произвольных криволинейных координатах (это означает, в частности, запись в произвольных системах отсчёта), как говорят, в ковариантном виде.

Основная задача теории Т.— определение гравитационного поля, что соответствует в теории Эйнштейна нахождению геометрии пространства-времени. Эта последняя задача сводится к нахождению метрического тензора gik.

Уравнения тяготения Эйнштейна связывают величины gik с величинами, характеризующими материю, создающую поле: плотностью, потоками импульса и т.п. Эти уравнения записываются в виде:

. (9)

Здесь Rik так называемый тензор Риччи, выражающийся через gik, его первые и вторые производные по координатам; R = Rik g ik (величины g ik определяются из уравнений gikg km = , где  — Кронекера символ); Tik так называемый тензор энергии-импульса материи, компоненты которого выражаются через плотность, потоки импульса и др. величины, характеризующие материю и её движение (под физической материей подразумеваются обычное вещество, электромагнитное поле, все др. физические поля).

Вскоре после создания общей теории относительности Эйнштейн показал (1917), что существует возможность изменения уравнений (9) с сохранением основных принципов новой теории. Это изменение состоит в добавлении к правой части уравнений (9) так называемого "космологического члена": Lgik. Постоянная L, называется "космологической постоянной", имеет размерность см-2. Целью этого усложнения теории была попытка Эйнштейна построить модель Вселенной, которая не изменяется со временем (см. Космология). Космологический член можно рассматривать как величину, описывающую плотность энергии и давление (или натяжение) вакуума. Однако вскоре (в 20-х гг.) советский математик А. А. Фридман показал, что уравнения Эйнштейна без L-члена приводят к эволюционирующей модели Вселенной, а американский астроном Э. Хаббл открыл (1929) закон так называемого красного смещения для галактик, которое было истолковано как подтверждение эволюционной модели Вселенной. Идея Эйнштейна о статической Вселенной оказалась неверной, и хотя уравнения с L-членом тоже допускают нестационарные решения для модели Вселенной, необходимость в L-члене отпала. После этого Эйнштейн пришёл к выводу, что введение L-члена в уравнения Т. не нужно (то есть что L = 0). Не все физики согласны с этим заключением Эйнштейна. Но следует подчеркнуть, что пока нет никаких серьёзных наблюдательных, экспериментальных или теоретических оснований считать L отличным от нуля. Во всяком случае, если L ¹ 0, то, согласно астрофизическим наблюдениям, его абсолютная величина чрезвычайно мала: |L|< 10-55 см-2. Он может играть роль только в космологии и практически совершенно не сказывается во всех др. задачах теории Т. Везде в дальнейшем будет положено L = 0.

Внешне уравнения (9) подобны уравнению (4) для ньютоновского потенциала. В обоих случаях слева стоят величины, характеризующие поле, а справа — величины, характеризующие материю, создающую поле. Однако уравнения (9) имеют ряд существенных особенностей. Уравнение (4) линейно и поэтому удовлетворяет принципу суперпозиции. Оно позволяет вычислить гравитационный потенциал j для любого распределения произвольно движущихся масс. Ньютоновское поле Т. не зависит от движения масс, поэтому уравнение (4) само не определяет непосредственно их движение. Движение масс определяется из второго закона механики Ньютона (6). Иная ситуация в теории Эйнштейна. Уравнения (9) не линейны, не удовлетворяют принципу суперпозиции. В теории Эйнштейна нельзя произвольным образом задать правую часть уравнений (Tik), зависящую от движения материи, а затем вычислить гравитационное поле gik. Решение уравнений Эйнштейна приводит к совместному определению и движения материи, создающей поле, и к вычислению самого поля. Существенно при этом, что уравнения поля Т. содержат в себе и уравнения движения масс в поле Т. С физической точки зрения это соответствует тому, что в теории Эйнштейна материя создаёт искривление пространства-времени, а это искривление, в свою очередь, влияет на движение материи, создающей искривление. Разумеется, для решения уравнений Эйнштейна необходимо знать характеристики материи, которые не зависят от гравитационных сил. Так, например, в случае идеального газа надо знать уравнение состояния вещества — связь между давлением и плотностью.

В случае слабых гравитационных полей метрика пространства-времени мало отличается от евклидовой и уравнения Эйнштейна приближённо переходят в уравнения (4) и (6) теории Ньютона (если рассматриваются движения, медленные по сравнению со скоростью света, и расстояния от источника поля много меньше, чем l = сt, где t — характерное время изменения положения тел в источнике поля). В этом случае можно ограничиться вычислением малых поправок к уравнениям Ньютона. Эффекты, соответствующие этим поправкам, позволяют экспериментально проверить теорию Эйнштейна (см. ниже). Особенно существенны эффекты теории Эйнштейна в сильных гравитационных полях.

Некоторые выводы теории тяготения Эйнштейна

Ряд выводов теории Эйнштейна качественно отличается от выводов ньютоновской теории Т. Важнейшие из них связаны с возникновением "чёрных дыр", сингулярностей пространства-времени (мест, где формально, согласно теории, обрывается существование частиц и полей в обычной, известной нам форме) и существованием гравитационных волн.

Чёрные дыры. Согласно теории Эйнштейна, вторая космическая скорость в сферическом поле Т. в пустоте выражается той же формулой, что и в теории Ньютона:

. (10)

Следовательно, если тело массы т сожмётся до линейных размеров, меньших величины r =2 Gm/c2, называемой гравитационным радиусом, то поле Т. становится настолько сильным, что даже свет не может уйти от него на бесконечность, к далёкому наблюдателю; для этого потребовалась бы скорость больше световой. Такие объекты получили название чёрных дыр. Внешний наблюдатель никогда не получит никакой информации из области внутри сферы радиуса r = 2Gm/с2. При сжатии вращающегося тела поле Т., согласно теории Эйнштейна, отличается от поля не вращающегося тела, но вывод об образовании чёрной дыры остаётся в силе.

В области размером меньше гравитационного радиуса никакие силы не могут удержать тело от дальнейшего сжатия. Процесс сжатия называется коллапсом гравитационным. При этом растет поле Т. — увеличивается искривлённость пространства-времени. Доказано, что в результате гравитационного коллапса неизбежно возникает сингулярность пространства-времени, связанная, по-видимому, с возникновением его бесконечной искривлённости. (Об ограниченности применимости теории Эйнштейна в таких условиях см. следующий раздел.) Теоретическая астрофизика предсказывает возникновение чёрных дыр в конце эволюции массивных звёзд (см. Релятивистская астрофизика); возможно существование во Вселенной чёрных дыр и др. происхождения. Чёрные дыры, по-видимому, открыты в составе некоторых двойных звёздных систем.

Гравитационные волны. Теория Эйнштейна предсказывает, что тела, движущиеся с переменным ускорением, будут излучать гравитационные волны. Гравитационные волны являются распространяющимися со скоростью света переменными полями приливных гравитационных сил. Такая волна, падая, например, на пробные частицы, расположенные перпендикулярно направлению её распространения, вызывает периодические изменения расстояния между частицами. Однако даже в случае гигантских систем небесных тел излучение гравитационных волн и уносимая ими энергия ничтожны. Так, мощность излучения за счёт движения планет Солнечной системы составляет около 1011 эрг/сек, что в 1022 раз меньше светового излучения Солнца. Столь же слабо гравитационные волны взаимодействуют с обычной материей. Этим объясняется, что гравитационные волны до сих пор не открыты экспериментально.

Квантовые эффекты. Ограничения применимости теории тяготения Эйнштейна

Теория Эйнштейна — не квантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. В противном случае возникли бы противоречия с принципом неопределённости для электронов, фотонов и т.д. Применение квантовой теории к гравитации показывает, что гравитационные волны можно рассматривать как поток квантов — "гравитонов", которые так же реальны, как и кванты электромагнитного поля — фотоны. Гравитоны представляют собой нейтральные частицы с нулевой массой покоя и со спином, равным 2 (в единицах Планка постоянной ).

В подавляющем большинстве мыслимых процессов во Вселенной и в лабораторных условиях квантовые эффекты гравитации чрезвычайно слабы, и можно пользоваться не квантовой теорией Эйнштейна. Однако квантовые эффекты должны стать весьма существенными вблизи сингулярностей поля Т., где искривления пространства-времени очень велики. Теория размерностей указывает, что квантовые эффекты в гравитации становятся определяющими, когда радиус кривизны пространства-времени (расстояние, на котором проявляются существенные отклонения от геометрии Евклида: чем меньше этот радиус, тем больше кривизна) становится равным величине rпл= . Расстояние rпл называется планковской длиной; оно ничтожно мало: rпл = 10-33 см. В таких условиях теория тяготения Эйнштейна неприменима.

Сингулярные состояния возникают в ходе гравитационного коллапса; сингулярность в прошлом была в расширяющейся Вселенной (см. Космология). Последовательной квантовой теории Т., применимой и в сингулярных состояниях, пока не существует.

Квантовые эффекты приводят к рождению частиц в поле Т. чёрных дыр. Для чёрных дыр, возникающих из звёзд и имеющих массу, сравнимую с солнечной, эти эффекты пренебрежимо малы. Однако они могут быть важны для чёрных дыр малой массы (меньше 1015 г), которые в принципе могли возникать на ранних этапах расширения Вселенной (см. "Чёрная дыра").

Экспериментальная проверка теории Эйнштейна

В основе теории тяготения Эйнштейна лежит принцип эквивалентности. Его проверка с возможно большей точностью является важнейшей экспериментальной задачей. Согласно принципу эквивалентности, все тела независимо от их состава и массы, все виды материи должны падать в поле Т. с одним и тем же ускорением. Справедливость этого утверждения, как уже говорилось, была впервые установлена Галилеем. Венгерский физик Л. Этвеш с помощью крутильных весов доказал справедливость принципа эквивалентности с точностью до 10-8; американский физик Р. Дикке с сотрудниками довёл точность до 10-10, а советский физик В. Б. Брагинский с сотрудниками — до 10-12.

Др. проверкой принципа эквивалентности является вывод об изменении частоты n света при его распространении в гравитационном поле. Теория предсказывает (см. Красное смещение) изменение частоты Dn при распространении между точками с разностью гравитационных потенциалов j1 — j2:

 (11)

Эксперименты в лаборатории подтвердили эту формулу с точностью по крайней мере до 1% (см. Мёссбауэра эффект).

Кроме этих экспериментов по проверке основ теории, существует ряд опытных проверок её выводов. Теория предсказывает искривление луча света при прохождении вблизи тяжёлой массы. Аналогичное отклонение следует и из ньютоновской теории Т., однако теория Эйнштейна предсказывает вдвое больший эффект. Многочисленные наблюдения этого эффекта при прохождении света от звёзд вблизи Солнца (во время полных солнечных затмений) подтвердили предсказание теории Эйнштейна (отклонение на 1,75’’ у края солнечного диска) с точностью около 20%. Гораздо большая точность была достигнута с помощью современной техники наблюдения внеземных точечных радиоисточников. Этим методом предсказание теории подтверждено с точностью (на 1974) не меньшей 6%.

Др. эффектом, тесно связанным с предыдущим, является большая длительность времени распространения света в поле Т., чем это дают формулы без учёта эффектов теории Эйнштейна. Для луча, проходящего вблизи Солнца, эта дополнительная задержка составляет около 2×10-4 сек. Эксперименты проводились с помощью радиолокации планет Меркурий и Венера во время их прохождения за диском Солнца, а также с помощью ретрансляции радиолокационных сигналов космическими кораблями. Предсказания теории подтверждены (на 1974) с точностью 2%.

Наконец, ещё одним эффектом является предсказываемый теорией Эйнштейна медленный дополнительный (не объясняемый гравитационными возмущениями со стороны др. планет Солнечной системы) поворот эллиптических орбит планет, движущихся вокруг Солнца. Наибольшую величину этот эффект имеет для орбиты Меркурия — 43’’ в столетие. Это предсказание подтверждено экспериментально, согласно современным данным, с точностью до 1%.

Таким образом, все имеющиеся экспериментальные данные подтверждают правильность как положений, лежащих в основе теории тяготения Эйнштейна, так и её наблюдательных предсказаний.

Следует подчеркнуть, что эксперименты свидетельствуют против попыток построить др. теории Т., отличные от теории Эйнштейна.

В заключение отметим, что косвенным подтверждением теории тяготения Эйнштейна является наблюдаемое расширение Вселенной, теоретически предсказанное на основе общей теории относительности советским математиком А. А. Фридманом в середине 20-х гг. нашего столетия.

Лит.: Эйнштейн А., Собр. научных трудов, т. 1—4, М., 1965—67; Ландау Л., Лифшиц Е., Теория поля, 6 изд., М., 1973; Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961; Зельдович Я. Б., Новиков И. Д., Теория тяготения и эволюция звёзд, М., 1971; Брумберг В. А., Релятивистская небесная механика, М., 1972; Брагинский В. Б., Руденко В. Н., Релятивистские гравитационные эксперименты, "Успехи физических наук", 1970, т. 100, в. 3, с. 395.

  И. Д. Новиков.

Нейтрино

·                     Рис. 1 Опыт Ф. Райнеса и К. Коуэна (схема)Опыт Ф. Райнеса и К. Коуэна (схема)

Рис. 1 Опыт Ф. Райнеса и К. Коуэна (схема)

·                     Рис. 2 Эксперимент по измерению спиральности нейтрино (схема)Эксперимент по измерению спиральности нейтрино (схема)

Рис. 2 Эксперимент по измерению спиральности нейтрино (схема)

·                     Рис. 3 Переход нейтриноПереход нейтрино

Рис. 3 Переход нейтрино

·                     Рис. 4 Нейтринный телескоп (схема)Нейтринный телескоп (схема)

Рис. 4 Нейтринный телескоп (схема)

1–3 из 4

Нейтрино (итал. neutrino, уменьшительное от neutrone — нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином 1/2 (в единицах постоянной Планка ) и исчезающе малым, по-видимому, нулевым, магнитным моментом. Н. принадлежит к группе лептонов, а по своим статистическим свойствам относится к классу фермионов. Название "Н." применяется к двум различным элементарным частицам — к электронному (ne) и к мюонному (nm) Н. Электронным называется Н., взаимодействующее с др. частицами в паре с электроном е- (или позитроном е+), мюонным — Н., взаимодействующее в паре с мюоном (m-, m+). Оба вида Н. имеют соответствующие античастицы: электронное

и мюонное

антинейтрино. Электронные и мюонные Н. принято различать с помощью сохраняющихся аддитивных лептонных квантовых чисел (лептонных зарядов) Le и Lm, при этом принимается, что Le = + 1, Lm = 0для nе и Le = - 1, Lm = 0 для , Le = 0, Lm = + 1 для nm и Le = 0, Lm = — 1 для . В отличие от др. частиц, Н. обладают удивительным свойством иметь строго определённое значение спиральности l — проекции спина на направление импульса: Н. имеют левовинтовую спиральность (l = —1/2), т. е. спин направлен против направления движения частицы, антинейтрино — правовинтовую (l = + 1/2), т. е. спин направлен по направлению движения.

Н. испускаются при бета-распаде атомных ядер, К-захвате, захвате m-ядрами и при распадах нестабильных элементарных частиц, главным образом пи-мезонов (p+, p-), К-мезонов и мюонов. Источниками Н. являются также термоядерные реакции в звёздах.

Н. принимают участие лишь в слабом взаимодействии и гравитационном взаимодействии и не участвуют в электромагнитном и сильном взаимодействиях. С этим связана крайне высокая проникающая способность Н., позволяющая этой частице свободно проходить сквозь Землю и Солнце.

История открытия нейтрино

Гипотеза Паули. Открытие Н. принадлежит к числу наиболее ярких и вместе с тем трудных страниц в физике 20 в. Прежде чем стать равноправным членом семьи элементарных частиц, Н. долгое время оставалось гипотетической частицей.

Впервые в экспериментальной физике Н. проявилось в 1914, когда английский физик Дж. Чедвик обнаружил, что электроны, испускаемые при b-распаде атомных ядер (в отличие от a-частиц и g-квантов, испускаемых при др. видах радиоактивных превращений), имеют непрерывный энергетический спектр. Это явление находилось в явном противоречии с теорией квантов, требовавшей, чтобы при квантовых переходах между стационарными состояниями ядер выделялась дискретная порция энергии (постулат Бора). Поскольку при испускании a-частиц и g-квантов это требование выполнялось, возникло подозрение, что при b-распаде нарушается закон сохранения энергии.

В 1930 швейцарский физик В. Паули в письме участникам семинара в Тюбингене сообщил о своей "отчаянной попытке" "спасти" закон сохранения энергии. Паули высказал гипотезу о существовании новой электрически нейтральной сильно проникающей частицы со спином 1/2 и с массой £ 0,01 массы протона, которая испускается при b-распаде вместе с электроном, что и приводит к нарушению однородности спектра b-электронов за счёт распределения дискретной порции энергии (соответствующей переходу ядра из одного состояния в другое) между обеими частицами. После открытия в 1932 тяжёлой нейтральной частицы — нейтрона, итальянский физик Э. Ферми предложил называть частицу Паули "нейтрино". В 1933 Паули сформулировал основные свойства Н. в их современном виде. Как выяснилось позже, эта гипотеза "спасла" не только закон сохранения энергии, но и законы сохранения импульса и момента количества движения, а также основные принципы статистики частиц в квантовой механике.

Теория b-распада Ферми. Гипотеза Паули естественным образом вошла в теорию b-распада, созданную Ферми в 1934 и позволившую описать явления электронного (b-) и позитронного (b+) распадов и К-захвата. Появилась теоретическая возможность ввести два разных Н.: антинейтрино, рождающееся в паре с электроном, и Н., рождающееся в паре с позитроном.

В теории Ферми b- (b+)-распад есть превращение нейтрона n (протона р) внутри ядра в протон (нейтрон):

С помощью теории Ферми была рассчитана форма спектра b-электронов, оказавшаяся вблизи верхней границы энергии b-электронов очень чувствительной к массе mn Н. Сравнение теоретической формы спектра с экспериментальной показало, что масса Н. много меньше массы электрона (и, возможно, равна нулю). Теория Ферми объяснила все основные черты b-распада, и её успех привёл физиков к признанию Н. Однако сомнения в существовании этой частицы ещё оставались.

Эксперименты по обнаружению нейтрино. Известны две возможности экспериментального обнаружения Н. Первая — наблюдение обратного b-распада — впервые рассмотрена Х. Бете и Р. Пайерлсом в 1934. Обратным b-распадом называются реакции (существование которых следует из теории Ферми):

происходящие как на свободных, так и на связанных в ядрах нуклонах. Оценка вероятности (сечения) поглощения Н. дала поразительный результат: в твёрдом веществе Н. с энергией, характерной для b-распада, должно пройти расстояние порядка сотен световых лет, прежде чем будет захвачено ядром. В 30—40-х гг. обнаружить такую частицу казалось вообще невозможным.

Другой путь — наблюдение отдачи ядра в момент испускания Н. — впервые рассмотрен советским физиком А. И. Лейпунским. В 1938 А. И. Алиханов и А. И. Алиханьян предложили использовать для этой цели реакцию К-захвата в 7Be: ядро 7Be захватывает электрон из К-оболочки атома и испускает Н., превращаясь в ядро 7Li, 7Ве (е-, ne)7Li; при этом, если Н. — реальная частица, 7Li получает импульс, равный и противоположный по знаку импульсу Н. Первый успешный опыт с этой реакцией был выполнен американским физиком Дж. Алленом в 1942. Оказалось, что энергия отдачи ионов 7Li согласуется с теоретическим значением (в предположении нулевой массы Н.). Последующие опыты с большей точностью подтвердили этот результат. Существование Н. стало экспериментальным фактом. В физике появилась новая частица, все свойства которой были определены из косвенных экспериментов.

Обнаружение свободного Н. в процессе обратного b-распада стало возможным после создания мощных ядерных реакторов и больших водородсодержащих сцинтилляционных детекторов. В реакторе в результате b--распада осколков деления урана испускаются антинейтрино с энергией до 10 Мэв, в среднем 6 частиц на 1 деление. Поток антинейтрино от мощного реактора составляет (вблизи реактора) около 1013 частиц на 1 см2 в 1 сек.

Эксперимент по прямому детектированию ne впервые был осуществлен в 1953 в США Ф. Райнесом и К. Коуэном на реакторе в Хэнфорде. Регистрировалась реакция (2') на водороде, входящем в состав сцинтилляционной жидкости с добавкой соли кадмия, сильно поглощающего нейтроны. С помощью техники запаздывающих совпадений удалось выделить из фона характерную цепочку событий, вызываемых антинейтрино: позитрон, рождающийся в реакции (2'), аннигилируя с электроном, испускает два g-кванта, которые производят первую сцинтилляционную вспышку; через 5—10 мксек за ней следует вторая вспышка от g-квантов, испущенных ядром кадмия в результате захвата нейтрона, образовавшегося в реакции (2') и замедлившегося в водородсодержащей жидкости. В 1956—59 опыт был повторен в лучших условиях (рис. 1). Было получено сечение s = (11 ± 2,6)·10-44 см2. Теоретическая величина сечения (усреднённого по спектру антинейтрино) в предположении двухкомпонентного Н. (см. ниже) равна (10—14)×10-44 см2. Эти опыты окончательно подтвердили существование свободного Н.

Основные свойства нейтрино

Нейтрино и антинейтрино. Представление о Н. и антинейтрино возникло чисто теоретически. Однако доказательство того, что эти частицы действительно разные, не может быть получено в рамках самой теории. Поскольку Н. не имеет электрического заряда, не исключено, что Н. по своим свойствам тождественно антинейтрино, т. е. является истинно нейтральной частицей; такое Н. впервые было рассмотрено итальянским физиком Э. Майорана и поэтому называлось "майорановским". В 1946 Б. М. Понтекорво предложил для экспериментального решения этой проблемы использовать реакцию превращения 37Cl в 37Ar. Из существования распада 37Ar (e-, ne)37CI следует реакция

37Cl + ne ® 37Ar + e-.     (3)

Если ne и  не тождественны, то реакция

аналогичная реакции (3), при облучении 37Cl пучком антинейтрино от реактора не должна наблюдаться. В эксперименте, осуществленном американским учёным Р. Дейвисом в 1955—56 на четырёххлористом углероде, реакцию (*) не удалось обнаружить. Этот результат доказывает нетождественность ne и  (и, следовательно, является основой для введения сохраняющегося лептонного числа Le).

Электронные и мюонные нейтрино. После открытия мюонов, p- и К-мезонов было установлено, что распад этих частиц также сопровождается вылетом Н.:

В 1957 М. А. Марков, Ю. Швингер иК. Нишиджима высказали предположение, что Н., рождающееся в паре с мюоном (nm), отлично от Н., рождающегося в паре с электроном (nе). Возможность проверки этих ассоциативных свойств Н. с помощью ускорителей высокой энергии рассматривалась в СССР М. А. Марковым и Б. М. Понтекорво. Успешные опыты были осуществлены в 1962 на Брукхейвенском ускорителе в США и в 1964 в Европейском центре ядерных исследований (в ЦЕРНе). Было показано, что под действием Н. от распадов

p+ ® m + nm, K+ ® m+ + nm,     (4)

происходит только реакция nm + n ® p + m-. Реакция nm + n ® р + e- не была найдена; это означает, что Н. от реакций (4) не рождают электроны. Т. о., было доказано существование двух разных Н. — nm и ne.

В 1964—67 в аналогичных опытах было установлено, что nm при столкновении с ядрами рождает m- и не рождает m+, т. е. мюонные нейтрино nm и антинейтрино  также не тождественны и необходимо ввести ещё одно сохраняющееся лептонное число Lm.

Спиральность и лептонные числа нейтрино. До открытия несохранения чётности в b-распаде считалось, что Н. описывается волновой функцией, являющейся решением Дирака уравнения, и имеет четыре состояния, соответствующие четырём линейно-независимым решениям: два с проекцией спина на импульс (спиральностью) l = —1/2 — левое (левовинтовое) Н. nл и левое антинейтрино  и два с l = + 1/2 — правое (правовинтовое) Н. nп и правое антинейтрино . Теория Н., предполагающая существование четырёх состояний, называется четырёхкомпонентной, а двух состояний — двухкомпонентной. Примером двухкомпонентного Н. является майорановское Н.

Обнаружение в 1956 несохранения чётности открыло новую теоретическую возможность описания Н. В 1957 Л. Д. Ландау и независимо пакистанский физик А. Салам, а также Ли Цзун-дао и Ян Чжэнь-нин построили двухкомпонентную теорию спирального Н., в которой Н. имеет только два состояния: Либо nл и , либо nп и , т. е. Н. и антинейтрино имеют противоположные значения спиральности. Для спирального двухкомпонентного Н. операция пространственной инверсии Р (операция перехода от правой системы координат к левой) и операция зарядового сопряжения С (переход от частицы к античастице) каждая в отдельности не имеет физического смысла, так как переводит реальное Н. в нефизическое состояние с неправильной спиральностью. Физический смысл имеет только произведение этих операций — так называемая комбинированная инверсия (CP), превращающая реальное Н. nл (nп) в реальное антинейтрино

с противоположной спиральностью.

В 1958 в Брукхейвене было проведено прямое измерение спиральности электронного Н., испускаемого в процессе 152Eum (e-,ne)152 Sm* (рис. 2), и найдено, что с вероятностью, близкой к 100%, ne обладает левовинтовой спиральностью. Измерения спиральности мюонных Н. в распадах p+ ® m+ + nm показали, что nm тоже левое. Было также установлено, что  и  имеют правую спиральность (рис. 3).

Этих опытов, однако, недостаточно для подтверждения теории двухкомпонентного Н. Доказательством двухкомпонентности Н. являются опыты Райнеса по измерению сечения захвата антинейтрино (см. выше): сечение, в соответствии с двухкомпонентной теорией, оказалось в 2 раза выше, чем рассчитанное по четырёхкомпонентной теории. Хотя все проведённые с Н. опыты не позволяют исключить майорановский вариант двухкомпонентного Н., теория спирального двухкомпонентного Н. более предпочтительна, так как допускает введение лептонных чисел Le и Lm, посредством которых удаётся получить все необходимые запреты в процессах с участием лептонов, например m± ® e±+g, е- + р ® n + p- + m+, К- ® p+ + е- + m- и др. Спиральная двухкомпонентная теория является логически более стройной и "экономной", так как из неё естественно вытекает равенство нулю массы и магнитного момента Н.

Помимо Le и Lm, имеются и др. способы введения лептонных чисел (см. Лептонный заряд).

Масса и магнитный момент нейтрино. Экспериментально невозможно исключить наличие у Н. очень малой массы. Наилучшая оценка верхнего предела массы электронного Н. получена из анализа формы спектра b-электронов трития: mne £ 60 эв (что почти в 104 раз меньше массы электрона me " 510 кэв). Для мюонного Н. экспериментальный предел значительно выше: mnm £ 1,2 Мэв. Если масса Н. не строго равна 0, Н. может иметь магнитный момент и, следовательно, участвовать в процессах электромагнитного взаимодействия, например в реакциях

ne + e- ® ne + e-, nm + p ® p + p° + nm.

Эксперименты по поиску этих реакций дали следующие ограничения на величину магнитного момента:

где mвмагнетон Бора, если

Осцилляции нейтрино. В 1958 Б. М. Понтекорво высказал гипотезу, что если масса Н. не строго равна 0 и нет строгого сохранения лептонных зарядов, возможны осцилляции Н., т. е. превращение одного вида Н. в другой (аналогично

осцилляциям К-мезонов вследствие несохранения странности взаимодействиях), например

и т.д. Вопрос об осцилляциях может быть решен лишь экспериментально.

Взаимодействия нейтрино

Как уже говорилось, взаимодействие Н. с др. частицами осуществляется посредством слабого взаимодействия. Современная теория универсального слабого взаимодействия (обобщённая теория Ферми), разработанная американскими учёными М. Гелл-Маном, Р. Фейнманом, Р. Маршаком и Е. Сударшаном, описывает все экспериментально наблюдавшиеся процессы с участием Н., а также предсказывает ещё не наблюдавшиеся, например упругое рассеяние Н. на электроне и мюоне: ne + e ® ne + e, nm + m ® nm + m. Эксперименты по рассеянию Н. на электроне по своей чувствительности близко подошли к возможности обнаружения этих процессов, однако, выделить их над уровнем фона пока не удалось.

Особый интерес представляет взаимодействие Н. при высоких энергиях. Согласно современной теории слабого взаимодействия, сечение рассеяния Н. на др. лептонах, например реакции nm + е- ® ne + m-, должно расти с ростом энергии пропорционально квадрату энергии в системе центра инерции (с. ц. и.) сталкивающихся частиц [или линейно в лабораторной системе (л. с.)]. Однако такой рост сечения взаимодействия в локальной теории Ферми не может происходить неограниченно, т.к. при энергиях ~300 Гэв в с. ц. и. сечение достигает своего естественного предела, определяемого так называемым условием унитарности (условием того, что суммарная вероятность всех возможных процессов при столкновении данных частиц равна 1). Можно ожидать, что при этих энергиях (если окажется справедливой современная теория) слабое взаимодействие станет "сильным" в том смысле, что сечения процессов множественного рождения лептонов станут сравнимыми с сечением двухчастичных процессов.

Экспериментально пока удалось исследовать только процессы взаимодействий Н. с сильно взаимодействующими частицами (адронами). Наблюдались квазиупругие процессы типа ne (nm) + n ® p + е-(m-) и неупругие процессы, например ne (nm) + n ® n (p) + е-(m-) + Np + N'K +..., где N, N' — целые числа. Для квазиупругих процессов можно теоретически предсказать ход сечения с ростом энергии. Согласно гипотезе советских учёных С. С. Герштейна и Я. Б. Зельдовича, нуклон является носителем сохраняющегося "слабого заряда", аналогичного электрическому. Если это так, то "слабый заряд" (как и электрический) должен быть "размазан" по объёму нуклона и нуклон при взаимодействии с Н. должен вести себя как протяжённая частица. В то время как сечение квазиупругого рассеяния Н. на точечном нуклоне растет линейно с ростом энергии (в л. с.), на протяжённом нуклоне, как показывают расчёты, оно достигает постоянного значения при энергии Н. En = 1—2 Гэв. Эксперименты подтвердили эту гипотезу при En = 1—5 Гэв.

Для неупругих процессов ситуация более сложная. М. А. Марков высказал предположение, что полное сечение взаимодействия Н. с нуклоном, несмотря на "обрезание" сечения в каждом отдельном канале реакции, должно расти линейно с возрастанием энергии (в л. с.) из-за неограниченного роста числа возможных каналов. В рамках определённых предположений это было доказано американскими учёными С. Адлером и Дж. Бьёрксном. Как показал Р. Фейнман, такая зависимость сечения от энергии возможна, если нуклон представляет собой облако точечных частиц ("партонов"). Измерения, проведённые в ЦЕРНе, согласуются с линейным ростом полного сечения в области En =1—10 Гэв: sn = (0,69 ± 0,05)·10-38En см2 (в формуле энергия En, выражена в Гэв). Получены также данные в опытах с Н. космических лучей при энергии 10—100 Гэв: sn = (0,55 ± 0,15)·10-38En см2. Первые результаты, полученные в Национальной ускорительной лаборатории США (Батавия), не противоречат линейному росту сечения до En~40 Гэв. Т. о., все данные согласуются с линейным ростом полного сечения взаимодействия Н. с нуклоном при En £ 100 Гэв. Высказывалось предположение, что сечение может линейно расти с энергией вплоть до геометрических размеров нуклона (~ 10-26 см2).

Существует теория, отличная от теории Ферми, в которой слабое взаимодействие осуществляется за счёт обмена так называемым промежуточным бозоном. В этой теории сечение взаимодействия Н. как с лептонами, так и с адронами должно "обрезаться" при высоких энергиях, причём энергия "обрезания" определяется массой промежуточного бозона.

В 1973 впервые (ЦЕРН) в пузырьковой камере наблюдалось около сотни случаев взаимодействия nm и  с ядрами с рождением адронов без образования мюонов, а также (1974) несколько случаев рассеяния  на электроне. Это, по-видимому, свидетельствует о существовании нового типа взаимодействия Н. с адронами и лептонами через так называемые нейтральные токи. Существование подобных взаимодействий вытекает, в частности, из объединённой теории слабых и электромагнитных взаимодействий (см. Слабые взаимодействия).

Во всех перечисленных выше экспериментах Н. выступает в роли инструмента исследования структуры элементарных частиц.

Естественные источники нейтрино

  Естественная радиоактивность. Любое космическое тело, в том числе Земля, содержит значительное количество радиоактивных элементов и является источником Н. Регистрация антинейтрино от Земли в принципе возможна, однако методы регистрации ещё не разработаны.

Столкновение протонов космических лучей с газом и реликтовыми фотонами может приводить к рождению заряженных p-мезонов, распад которых сопровождается испусканием Н. (или антинейтрино). В этом механизме возможна генерация Н. с энергиями вплоть до Еn = 1020 эв. Источником таких Н. является атмосфера Земли, а также ядро и диск Галактики, где сосредоточена основная масса межзвёздного газа. Н. от столкновения протонов сверхвысоких энергий с реликтовыми фотонами испускаются во всём мировом пространстве. Существует гипотеза, что Н. сверхвысоких энергий являются причиной сверхмощных широких атмосферных ливней (см. Космические лучи).

Атмосфера Земли — пока единственный естественный источник, от которого удалось зарегистрировать Н. Рождаются Н. в верхних слоях атмосферы, где генерируется наибольшее число p- и К-мезонов. Впервые идея экспериментов с Н. космических лучей была высказана М. А. Марковым (1960). Было предложено регистрировать глубоко под землёй мюоны с энергией 10—100 Гэв от реакции nm + n ® р + m-(**). Регистрируя мюоны из нижней полусферы Земли и под большими зенитными углами, можно избавиться от фона атмосферных мюонов и иметь чистые нейтринные события (**). Первые результаты получены в Индии и в Южной Африке в 1965 с помощью специальных нейтринных телескопов (рис. 4). К 1973 мировая статистика насчитывала свыше сотни нейтринных событий.

Реакции термоядерного синтеза химических элементов — основной механизм генерации Н. в недрах Солнца и большей части звёзд (в период их "ядерной" эволюции).

Сверхгорячая плазма служит источником Н. в звёздах на завершающих этапах эволюции, а также в модели горячей Вселенной в первые доли секунды её возникновения. Возможны два вида генерации Н. Первый связан с реакциями взаимного превращения нуклонов

(так называемый урка-процесс) и может идти как на связанных нуклонах ядер при температурах Т ~ 109 К, так и на свободных нуклонах при Т ³ 1010 К. Второй способ, чисто лептонный, связан с реакциями типа

а также с реакциями

(фоторождение Н.),

(нейтринная аннигиляция электрон-позитронных пар) и др., которые происходят, если существует гипотетическое рассеяние ne + е ® ne + e (предсказываемое теорией Ферми). Пока не удалось доказать существование ne + е ® ne + е — рассеяния лабораторными методами (на Н. от реакторов и ускорителей); считается, что астрофизические данные свидетельствуют в пользу существования такого процесса.

Реликтовые Н. Согласно модели горячей Вселенной, Н., испущенные в момент её возникновения, испытывают сильное красное смещение при космологическом расширении Вселенной. Такие реликтовые Н. заполняют всё мировое пространство. В наиболее реалистическом варианте модели горячей Вселенной число мюонных и электронных Н. и антинейтрино одинаково и составляет ~ 200 частиц/см3, а средняя энергия Н. — (2—3)×10-4 эв, что соответствует температуре нейтринного газа 2—3 К. Для понимания механизма развития Вселенной очень важно экспериментально установить наличие реликтовых Н. и измерить температуру нейтринного газа.

В рамках модели горячей Вселенной удаётся получить наилучшую оценку для массы мюонного Н. Согласно космологическим данным, плотность материи в расширяющейся Вселенной не может превышать 10-28 г/см3; отсюда следует, что максимально возможная масса мюонного Н. составляет ~ 300 эв (т. е. значительно ниже верхнего предела, установленного лабораторными методами).

Нейтронизация вещества, т. е. превращение протонов в нейтроны по схеме р + е- ® n + ne, может служить мощным источником Н., когда звезда по каким-либо причинам теряет гравитационную устойчивость и коллапсирует, превращаясь в нейтронную звезду. При этом огромное число Н., равное по порядку величины числу протонов в звезде (~ 1057), испускается за сотые доли сек. Если коллапсирует горячая звезда, нейтронизация происходит совместно с процессами, характерными для горячей плазмы. Такая ситуация возможна при взрывах сверхновых и при коллапсе гравитационном.

О возможности регистрации Н. от Солнца и др. звёзд см. Нейтринная астрономия.

Развитие науки о Н. за последние четверть века убедительно доказало, что Н. из гипотетической частицы превратилось в мощный инструмент исследования микро- и макромира.

Лит.: Аллен Дж., Нейтрино, пер. с англ., М., 1960; Алиханов А. И., Слабые взаимодействия. Новейшие исследования b-распада, М., 1960; Теоретическая физика 20 века, М., 1962; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Понтекорво Б. М., Нейтрино и его роль в астрофизике, "Успехи физических наук", 1963, т. 79, в. 1, с. 3; Марков М. А., Нейтрино, М., 1964; Железных И. М., Подземные нейтринные эксперименты, "Успехи физических наук". 1966, т. 89, в. 3, с. 513; Ли Ц. и Ву Ц., Слабые взаимодействия, пер. с англ., М., 1968; Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Березинский В. С., Нейтрино, М., 1973.

  Г. Т. Зацепим, Ю. С. Копысов.

 

Антивещество

Антивещество, материя, построенная из античастиц. Ядра атомов вещества состоят из протонов и нейтронов, а электроны образуют оболочки атомов. В А. ядра состоят из антипротонов н антинейтронов, а место электронов в их оболочках занимают позитроны.

Согласно современным теориям, ядерные силы, обусловливающие устойчивость атомных ядер, одинаковы для частиц и античастиц. То же можно сказать и об электромагнитных и обменных силах, благодаря которым существуют устойчивые конфигурации электронов в атомах и молекулах: т. к. заряды всех античастиц противоположны зарядам соответствующих частиц, отрицательно заряженные ядра антиатомов притягивают позитроны точно так же, как ядра притягивают электроны в атомах. Поэтому вся иерархия строения вещества из частиц должна быть осуществима и для А., состоящего из античастиц. В 1965 впервые было экспериментально доказано, что из античастиц могут строиться комплексы того же типа, что и из частиц. Группа американских физиков под руководством Л. Ледермана получила на ускорителе и зарегистрировала первое антиядро — антидейтрон (связанное состояние антипротона и антинейтрона). В 1969 в экспериментах на ускорителе протонов с энергией 70 Гэв (Серпухов) советские физики (руководитель Ю. Д. Прокошкин) зарегистрировали ядра антигелия-3, состоящие из 2 антипротонов и антинейтрона.

Поскольку законы физики одинаковы для частиц и античастиц, возникает вопрос, не имеются ли во Вселенной в целом равные количества вещества и А. В наблюдаемой нами части Вселенной не обнаружено сколько-нибудь существенных скоплений А. В частности, антипротонов и антиядер нет в космических лучах. Однако важный для астрофизики и космологии вопрос о распространённости А. во Вселенной пока остаётся открытым.

Яндекс.СловариБольшая советская энциклопедия

 

Субстанция

Субстанция (лат. substantia — сущность, нечто лежащее в основе), объективная реальность, рассматриваемая со стороны её внутреннего единства; материя в аспекте единства всех форм её движения; предельное основание, позволяющее сводить чувственное многообразие и изменчивость свойств к чему-то постоянному, относительно устойчивому и самостоятельно существующему. В соответствии с общей направленностью определённой философской концепции вычленяются одна С. (монизм), две С. (дуализм) или множество С. (плюрализм). В истории философии С. интерпретировалась по-разному: как субстрат, как конкретная индивидуальность, как сущностное свойство, как то, что способно к самостоятельному существованию, как основание и центр изменений предмета, как логический субъект. Уже в античной философии вычленялись различные С., которые трактовались как материальный субстрат и первооснова изменений вещей (например, атомы Демокрита, четыре стихии Эмпедокла). Аристотель отождествлял С. с первой сущностью, характеризуя её как основу, неотделимую от вещи, её индивидуальности. Наряду с онтологическими особенностями субстанции Аристотель выявляет и её логические характеристики: С. как субъект, а не как предикат суждения, выразимость С. в виде и роде предмета и др. Трактовка Аристотелем формы как первопричины, обусловливающей определённость предмета, послужила истоком не только различения духовной и телесной С., но и спора о так называемых субстанциальных формах, пронизывающего всю средневековую философию (см. Номинализм, Реализм). В философии нового времени выделяются две линии анализа С. Первая из них, связанная с онтологическим пониманием С. как предельного основания бытия, была начата в эмпиризме Ф. Бэкона на пути качественного описания субстанциальных форм и отождествления С. с формой конкретных вещей. Этой качественной трактовке субстанции Р. Декарт противопоставлял учение о двух С.: материальной (для которой характерны протяжённость и количеств. измеримость) и духовной (мыслительной). Трудности дуализма в объяснении взаимоотношения С. были преодолены Б. Спинозой на основе пантеистического. монизма: для него мышление и протяжённость — не две С., а два атрибута единой субстанции. Г. Лейбниц в своей монадологии вычленял множество простых и неделимых С., обладающих самостоятельностью, активностью и изменчивостью. Вторая линия анализа С. — гносеологическое осмысление понятия С., его возможности и необходимости для научного знания. Она была начата Дж. Локком в его анализе С. как одной из сложных идей и критике эмпирически-индуктивного обоснования идеи субстанции. Дж. Беркли вообще отрицал понятие материальной С., хотя и допускал существование духовной субстанции. Д. Юм, отвергая существование как материальной, так и духовной С., видел в идее С. лишь гипотетическую ассоциацию восприятий в некоторую целостность, присущую обыденному, а не научному знанию. И. Кант, развивая гносеологический анализ понятия С., указывал на необходимость этого понятия для научно-теоретического объяснения явлений. Категория С., по Канту, — "... условие возможности всякого синтетического единства восприятий, то есть опыта..." (Соч., т. 3, М., 1964, с. 254). В отличие от недиалектического понимания С. как неизменного, вещественного субстрата, Кант рассматривал С. как нечто, внутренне изменчивое (см. там же, с. 257). Этот подход был развит Г. Гегелем, который выделял внутреннюю противоречивость С., её саморазвитие. Однако диалектическая трактовка С. как субъекта, развёртывающего своё содержание, не была последовательно осуществлена Гегелем, ибо для него С. — ступень развития "идеи", а не бытия. Для современной буржуазной философии характерно негативное отношение к категории С. и её роли в познании, что в известной мере связано с усилением в науке внимания к изучению систем, связей и отношений. Вместе с тем в современном естествознании сохраняется тенденция поиска единой С. ("первоматерии"). В различных течениях неопозитивизма понятие С. рассматривается как рудимент обыденного сознания, проникшего в науку, как неоправданный способ удвоения мира и натурализации восприятий. С одной стороны, критика понятия С. смыкается с критикой материализма, а с другой — с отрицанием понятия причинности и причинного объяснения, с попытками заменить их описанием (П. Дюгем) или "функциональным отношением" (Э. Кассирер). В ряде направлений современной буржуазной философии (экзистенциализме, философии обыденного языка) понятие С. рассматривается как исходный принцип натуралистической метафизики, а его возникновение объясняется специфической структурой европейских языков, для которых характерно противопоставление субъекта и предиката суждения. Наряду с этой линией истолкования понятия С. существует ряд направлений, которые сохраняют традиционную трактовку С. (неотомизм, неореализм). Некоторые идеалистические течения буржуазной философии 20 в. стремятся выявить С. культуры и человеческого существования — ценности в неокантианстве, жизнедеятельность в философии жизни и др. Диалектико-материалистическое учение о С. было развито К. Марксом в его анализе капиталистического производства и форм стоимости (в "Капитале" абстрактный труд рассматривается как С. меновой и др. форм стоимости). С точки зрения диалектического материализма, категория С. — одна из универсально-логических характеристик материи как активной причины своих собственных изменений, форма причинного объяснения объективного мира. В противоположность феноменалистскому (см. Феноменализм) отрицанию категории С. марксизм подчёркивает её необходимость для научно-теоретического анализа действительности. Именно это требование выдвигал В. И. Ленин: "С одной стороны, надо углубить познание материи до познания (до понятия) субстанции, чтобы найти причины явлений. С другой стороны, действительное познание причины есть углубление познания от внешности явлений к субстанции" (Полн. собр. соч., 5 изд., т. 29, с. 142—43).

Лит.: История марксистской диалектики, М., 1971, гл. 10; Ильенков Э. В., Диалектическая логика, М., 1974; Орынбеков М. С., Проблема субстанции в философии и науке, А.-А., 1975; Heidmann К.., Der Substanzbegriff von Abalard bis Spinoza, B., 1890; Hessen J., Das Substanzproblem in der Philosophie der Neuzeit, B.— Bonn, 1932.

  А. П. Огурцов.

Взаимодействие (философ.)

Взаимодействие, одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В. представляет собой вид непосредственного или опосредованного, внешнего или внутреннего отношения, связи. Свойства объекта могут проявиться и быть познанными только во В. с другими объектами. "Взаимодействие — вот первое, что выступает перед нами, когда мы рассматриваем движущуюся материю..." (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 546). Понятие В. находится в глубокой связи с понятием структуры. В. выступает как интегрирующий фактор, посредством которого происходит объединение частей в определенный тип целостности. Например, электромагнитное В. между ядром и электронами создаёт структуру атома. В. людей между собой и с миром, т. е. общественная практика, определяет структуру общества, человеческое поведение и сознание.

  В. носит объективный и универсальный характер. В. охвачены все формы бытия и формы их отражения. В силу универсальности В. осуществляется взаимная связь всех структурных уровней бытия, материальное единство мира. Абсолютная природа В. выступает не непосредственно, а осуществляется в ограниченных, конечных формах, и в этом смысле В. относительно. Относительный характер В. заключается также и в том, что оно осуществляется с конечной скоростью. Существует пространственно-временной предел, вне которого непосредственное В. данного объекта с другими отсутствует. Однако опосредованно они могут взаимодействовать со сколь угодно отдалёнными объектами. Цепь В. нигде не оборвана, она не имеет ни начала, ни конца. Каждое явление — лишь звено всеобщей цепи В. Принцип В. конкретизируется в учении о причинности. Именно В. определяет отношение причины и следствия: объект воздействия причины не пассивен — он реагирует и тем самым причинность переходит во В. Каждая из взаимодействующих сторон выступает как причина другой и как следствие одновременного обратного влияния противоположной стороны. "Ближайшим образом взаимодействие представляется взаимной причинностью предположенных, обусловливающих друг друга субстанций; каждая есть относительно другой одновременно и активная и пассивная субстанция" (Гегель, Соч., т. 5, М., 1937, с. 691). В. обусловливает развитие объектов. Именно В. противоположностей, противоречие, является самым глубоким источником, основой и конечной причиной возникновения, самодвижения и развития объектов, их порождения или их возникновения. Самодовлеющее В. естественных сил и процессов как источник самодвижения и развития вещей исключает вмешательство сверхъестественных "абсолютных" источников движения и организации материального мира. Каждая форма движения материи имеет в своей основе определённые типы В. структурных элементов. При этом В. частей развивающейся системы является одновременно и регулирующим, управляющим фактором, определяющим направление её развития. Каждой качественно определенной системе свойствен особый тип В. Современное естествознание показало, что всякое В. связано с материальными полями и сопровождается переносом материи, движения и информации. В. может осуществляться лишь с помощью специфического материального носителя. Современная классификация В. основывается на различении силовых и информационных В. В физике известно четыре основных типа силового В., которые дают ключ к пониманию бесконечно разнообразных физических процессов, — гравитационные В., электромагнитные В., сильные В. (ядерные) и слабые В. (распадные). Каждый тип В. в физике характеризуется определённой мерой (подробнее см. Взаимодействие в физике). Современная биология исследует В. на различных уровнях: молекулярном, клеточном, организменном, популяционном, видовом, биоценоза. Ещё более сложные формы В. характеризуют жизнь общества. По определению Маркса, общество — это "продукт взаимодействия людей" (см. К. Маркс и Ф. Энгельс, Соч., 2 изд., т. 27, с. 402). Классические примеры исследования многообразных В. в обществе как целостной, внутренне дифференцированной, саморазвивающейся системы — "Капитал" К. Маркса, "Развитие капитализма в России" В. И. Ленина. Категория В. является существенным методологическим принципом познания природных и общественных явлений. Чтобы действительно вскрыть суть объекта, необходимо выявить его закономерные В. Без изучения В. в его общем и конкретном проявлении нельзя понять ни свойств, ни структуры, ни законов действительности. "Ни один феномен не объясняется сам по себе и из самого себя" (Гёте И. В., Избранные философские произведения, М.,1964, с. 334). Любой объект может быть понят и определён лишь в системе отношений и В. с другими окружающими явлениями, их частями, сторонами и свойствами. Познание вещей означает познание их В. и само является результатом В. между субъектом и объектом. В. — не только исходный, но и конечный пункт познания. "Мы не можем пойти дальше познания этого взаимодействия именно потому, что позади его нечего больше познавать" (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 546). Категория В. занимает фундаментальное место в концептуальном аппарате современного теоретического мышления.

  Лит.: Энгельс Ф., Диалектика природы, М., 1955, с. 129, 184, 312; Григорьев В. И., Мякишев Г. Я., Силы в природе, 3 изд., М., 1969; Уемов А. И., Вещи, свойства и отношения, М., 1963; Кедров Б. М., Энгельс и диалектика естествознания, М., 1970, гл. 4.

  А. Г. Спиркин.

Галактика

·                     Галактика в созвездии Волос ВероникиГалактика в созвездии Волос Вероники

Галактика в созвездии Волос Вероники

·                     Галактика в созвездии АндромедыГалактика в созвездии Андромеды

Галактика в созвездии Андромеды

·                     Часть Млечного Пути в созвездиях Орла и ЛебедяЧасть Млечного Пути в созвездиях Орла и Лебедя

Часть Млечного Пути в созвездиях Орла и Лебедя

Галактика (позднегреч. Galaktikos — молочный, млечный, от греческого gala — молоко), обширная звёздная система, к которой принадлежит Солнце, а следовательно, и вся наша планетная система вместе с Землёй. Г. состоит из множества звёзд различных типов, а также звёздных скоплений и ассоциаций, газовых и пылевых туманностей и отдельных атомов и частиц, рассеянных в межзвёздном пространстве. Большая часть их занимает объём линзообразной формы поперечником около 30 и толщиной около 4 килопарсек (соответственно около 100 тыс. и 12 тыс. световых лет). Меньшая часть заполняет почти сферический объём с радиусом около 15 килопарсек (около 50 тыс. световых лет). Все компоненты Г. связаны в единую динамическую систему, вращающуюся вокруг малой оси симметрии. Земному наблюдателю, находящемуся внутри Г., она представляется в виде Млечного Пути (отсюда и её название — "Г.") и всего множества отдельных звёзд, видимых на небе. В связи с этим Г. называется также системой Млечного Пути. В отличие от всех др. галактик, ту, к которой принадлежит Солнце, иногда называют "нашей Галактикой" (термин пишут всегда с прописной буквы).

Звёзды и межзвёздная газопылевая материя заполняют объём Г. неравномерно: наиболее сосредоточены они около плоскости, перпендикулярной оси вращения Г. и являющейся плоскостью её симметрии (т. н. галактической плоскостью). Вблизи линии пересечения этой плоскости с небесной сферой (галактического экватора)и виден Млечный Путь, средняя линия которого представляет собой почти большой круг, т. к. Солнечная система находится недалеко от этой плоскости. Млечный Путь представляет собой скопление огромного количества звёзд, сливающихся в широкую белёсую полосу; однако звёзды, проектирующиеся на небе рядом, удалены друг от друга в пространстве на огромные расстояния, исключающие их столкновения, несмотря на то, что они движутся с большими скоростями (десятки и сотни км/сек)в разных направлениях. Наименьшая плотность распределения звёзд в пространстве (пространственная плотность) наблюдается в направлении полюсов Г. (её северный полюс находится в созвездии Волос Вероники). Общее количество звёзд в Г. оценивается в 100 млрд.

Межзвёздное вещество рассеяно в пространстве также неравномерно, концентрируясь преимущественно вблизи галактической плоскости в виде глобул, отдельных облаков и туманностей (от 5 до 20—30 парсек в поперечнике), их комплексов или аморфных диффузных образований. Особенно мощные, относительно близкие к нам тёмные туманности представляются невооруженному глазу в виде тёмных прогалин неправильных форм на фоне полосы Млечного Пути; дефицит звёзд в них является результатом поглощения света этими несветящимися пылевыми облаками. Многие межзвёздные облака освещены близкими к ним звёздами большой светимости и представляются в виде светлых туманностей, т. к. светятся либо отражённым светом (если состоят из космических пылинок), либо в результате возбуждения атомов и последующего испускания ими энергии (если туманности газовые).

Полная масса Г., включая все звёзды и межзвёздное вещество, оценивается в 1011 масс Солнца, т. е. около 1044 г. Как показывают результаты детальных исследований, строение Г. схоже со строением большой галактики в созвездии Андромеды, галактики в созвездии Волос Вероники и др. Однако, находясь внутри Г., мы не можем видеть всю её структуру в целом, что затрудняет её изучение.

Впервые звёздную природу Млечного Пути обнаружил Г. Галилей в 1610, но последовательное изучение строения Г. началось лишь в конце 18 в., когда В. Гершель, применив свой "метод черпков", подсчитал числа звёзд, видимых в его телескоп в различных направлениях. На основании результатов этих наблюдений он высказал предположение, что наблюдаемые звёзды образуют гигантскую систему сплюснутой формы. В. Я. Струве обнаружил (1847), что число звёзд в единице объёма увеличивается с приближением к галактической плоскости, что межзвёздное пространство не идеально прозрачно, а Солнце не расположено в центре Г. В 1859 М. А. Ковальский указал на вероятное осевое вращение всей системы Г. Первые более или менее обоснованные оценки размеров Г. выполнили немецким астроном X. Зелигер и голландским астроном Я. Каптейн в 1-й четверти 20 в. Зелигер, допуская неравномерное распределение звёзд в пространстве и различную их светимость, заключил, что поверхности одинаковой звёздной плотности являются эллипсоидами вращения со сжатием 1:5. Однако из-за неучёта искажающего влияния межзвёздного поглощения света звёзд многие из первых выводов были ошибочными; в частности, оказались преувеличенными размеры Г. При определениях положения Солнца (Земли) в Г. большинство исследователей относило его к центру Г., главной причиной чего было также игнорирование влияния поглощения света. Такой взгляд поддерживался также и живучестью геоцентрического и антропоцентрического миропредставления. В 20-х гг. 20 в. американский астроном Х. Шепли окончательно доказал нецентральное положение Солнца в Г., определив при этом направление на центр Г. (в созвездии Стрельца).

В середине 20-х гг. 20 в. Г. Стрёмберг (США), изучая закономерности движения Солнца относительно различных групп звёзд, обнаружил т. н. асимметрию звёздных движений, которая дала фактический материал для обоснования многих выводов о сложности строения Г. Швед. астроном Б. Линдблад (20-е гг. 20 в.), изучая динамику и строение Г. на основе анализа скоростей звёзд, обнаружил сложность строения Г. и принципиальное различие пространственных скоростей звёзд, населяющих разные части Г., хотя все они и связаны в единую систему, симметричную относительно галактической плоскости. Голландским астроном Я. Оорт в 1927 на основе статистического изучения лучевых скоростей и собственных движений звёзд доказал существование вращения Г. вокруг собственной малой оси. При этом оказалось, что внутренние, более близкие к центру, части Г. вращаются быстрее, чем внешние. На расстоянии Солнца от центра Г. (10 килопарсек) эта скорость около 250 км/сек; период полного оборота — около 180 млн. лет.

Доказательство межзвёздного поглощения света звёзд (1930, сов. астроном Б. А. Воронцов-Вельяминов, американский астроном Р. Трамплер), его количественные оценки и учёт позволили уточнить расстояния до отдельных галактических объектов и размеры Г., положили начало выявлению деталей её структуры. Многочисленные исследования пространственного распределения звёзд различных типов (советский астроном П. П. Паренаго и др.), собственных движений звёзд (ранние работы С. К. Костинского на Пулковской обсерватории, американского астронома В. Боса и др.), движения Солнца в пространстве, а также и движений звёздных потоков (советским астроном В. Г. Фесенков, голландским астроном А. Блау и др.), изучение галактического гравитационного поля и др. позволили открыть, с одной стороны, много общих закономерностей, а с другой — большое разнообразие в кинематических, физических и структурных характеристиках отдельных составляющих Г.

В 30-е и последующие годы 20 в. значительных успехов в области исследований Г. достигли советские астрономические обсерватории, Важные результаты получены: в области динамики звёздных систем; в наблюдениях и составлении многочисленных каталогов параметров звёзд и др. галактических объектов; в развитии новых взглядов на природу межзвёздной среды; в разработке новых теорий и методов, позволивших выполнить количественные оценки параметров, характеризующих поглощение в галактическом пространстве; в выяснении связей между звёздами и межзвёздным веществом. В избранных областях Млечного Пути проведены по плану Г. А. Шайна (СССР) и по комплексному плану П. П. Паренаго фотометрия и спектральная классификация десятков тысяч звёзд. Огромное значение для понимания процессов развития Г. имело открытие звёздных ассоциаций. Большую роль в изучении Г. сыграли успехи советской науки о переменных звёздах. Сопоставление их физических особенностей и морфологических характеристик с возрастными и пространственными параметрами позволило решить ряд задач структуры и природы Г. Исследования советских и американских астрономов сделали очевидным сложное строение Г. Оказалось, что различным частям Г. соответствуют различные, вполне определенные элементы их состава. В 1948 советские исследователи в результате наблюдений в инфракрасных лучах впервые получили изображение ядра Г. Наблюдения 50-х гг. 20 в. показали наличие у нашей Г. спиральных рукавов. Изучение Г., её строения и развития — предмет, в первую очередь, трёх разделов астрономии: звёздной астрономии, астрометрии и астрофизики. Все эти разделы сыграли большую роль в уточнении и детализации наших представлений о Г. Большое значение для исследования Г. имело развитие радиоастрономии, получившей много новых сведений о Г. Радиоастрономические наблюдения позволили обнаружить большое количество источников излучения в радиодиапазоне в межзвёздных пространствах Г., массы нейтрального водорода, изучить их движения, выяснить общие черты внутреннего строения Г.

К началу 70-х гг. 20 в. в результате исследований, выполненных в СССР и за рубежом, сложилось следующее представление о Г. Степень общей сплюснутости Г., т. е. отношение толщины Г. к её экваториальному диаметру, составляет примерно 1:10, хотя резко очерченных границ Г. не имеет, Толщина расположенного вдоль плоскости галактического экватора слоя, внутри которого находится большинство звёзд и основной массы межзвёздного вещества, равна 400—500 парсек. Пространственная плотность звёзд в нём такова, что одна звезда приходится на объём, равный кубу с ребром в 2 парсека. В окрестностях Солнца плотность несколько меньше. Она значительно возрастает по мере приближения к центру Г., который при наблюдении с Земли виден в созвездии Стрельца. Следовательно, распределение звёзд характеризуется концентрацией как к плоскости Г., так и к её центру. Общая масса межзвёздного газа в Г. составляет около 0,05 массы всех звёзд, и его средня плотность близ плоскости экватора не превосходит 10-25 или 10-24 г/см3. Межзвёздная пыль, состоящая из твёрдых частичек, радиусы которых порядка 10-4—10-5 см, в своей массе примерно в 100 раз меньше массы газа. Не влияя из-за ничтожной массы на динамику Г., пыль тем не менее заметно влияет на видимую структуру Г., рассеивая свет звёзд, проходящий через её среду. Ядро Г., будучи погружено в относительно плотные массы межзвёздного вещества, мало доступно оптическим наблюдениям, но радиоастрономические наблюдения указывают на активность ядра, присутствие в нём больших масс вещества и источников энергии.

Г. имеет резко выраженное подсистемное строение; различают три подсистемы: плоскую, промежуточную и сферическую. Плоская подсистема характеризуется наличием молодых горячих звёзд, переменных звёзд типа долгопериодических цефеид, звёздных ассоциаций, рассеянных звёздных скоплений и газо-пылевого вещества. Все они сосредоточены у галактической плоскости в форме экваториального диска (толщиной 1/20 поперечника Г.). Средний возраст звёздного населения диска около 3 млрд. лет. Слабее концентрируются к плоскости Г. жёлтые и красные звёзды-карлики и звёзды-гиганты, занимающие объём в виде сильно сплюснутого эллипсоида. Все субкарлики, жёлтые и красные гиганты, переменные звёзды типа короткопериодических цефеид и шаровые звёздные скопления образуют сферическую составляющую (иногда называется гало), заполняя сферический объём (со средним диаметром, превышающим 30 тыс. парсек, т. е. 100 тыс. световых лет) с резким падением плотности в направлении от центральных областей к периферии. Её возраст более 5 млрд. лет. Объекты различных составляющих отличаются друг от друга также и скоростями движения, и химическим составом. Звёзды плоской составляющей имеют большие скорости движения относительно центра Г. и они богаче металлами. Это указывает на то, что звёзды разных типов, относящиеся к разным подсистемам, формировались при различных начальных условиях и в различных областях пространства, занимаемого галактическим веществом. Вся галактическая система погружена в обширную газовую массу, которую иногда называют галактической короной. Из центральной области Г. распространяются вдоль галактической плоскости спиральные ветви, которые, огибая ядро и разветвляясь, постепенно расширяются, теряя яркость. Спиральной структурой, оказавшейся весьма характерным свойством галактик на некотором этапе их эволюции, Г. сходна с множеством др. звёздных систем того же типа, что и она, имеющих такой же звёздный состав. В развитии спиральной структуры, по-видимому, играют роль гравитационные силы и магнитогидродинамические явления, при этом на неё влияют и особенности вращения Г. Вдоль спиральных ветвей происходит звездообразование и они населены наиболее молодыми галактическими объектами.

Вопросы эволюции Г. в целом или отдельных её составных элементов имеют большое мировоззренческое значение. В течение долгого времени господствовал взгляд об одновременном образовании всех звёзд и др. объектов Г. Такой взгляд связывался с признанием единовременного происхождения всех галактик в одной точке Вселенной и их последующего "разбегания" в разные стороны от неё. Однако детальные исследования, основанные на многочисленных наблюдениях, привели к заключению (советским астроном В. А. Амбарцумян), что процесс звёздообразования продолжается и в настоящую эпоху.

Проблема происхождения и развития звёзд в Г. является фундаментальной проблемой. Существуют две главные, но противоположные точки зрения на формирование звёзд. Согласно первой из них, звёзды образуются из газовой материи, в значительном количестве рассеянной в Г. и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких млн. градусов; этого достаточно для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара —звезды. Согласно второй точке зрения, звёзды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода ещё не обнаружено и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звёзд, деления и распада систем наблюдаются во многих случаях, процессы же образования звёзд из межзвёздного вещества не наблюдаются, говорит в пользу второй точки зрения.

Предполагается, что Г. в целом развилась в процессе конденсации первичного газового облака, богатого водородом; образовавшиеся при этом звёзды в нашу эпоху наблюдаются как звёзды сферической составляющей, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счёт выбрасывания вещества из недр ранее образовавшихся звёзд, в которых уже в течение многих сотен млн. лет шли внутриядерные реакции и водород превращался в более тяжёлые элементы. Поэтому более позднее "поколение" звёзд, образовавшее диск Г., оказалось более богатым металлами. Эта концепция объясняет наблюдаемое распределение скоростей звёзд и расслоение последних по подсистемам. Тем не менее в изложенной картине остаётся немало противоречий. Развиваемое рядом советских астрономов представление о роли в эволюции галактик мощных взрывных отталкивательных сил, таящихся в недрах галактик, может пролить новый свет на проблему развития Г.

См. илл.

Лит.: Паренаго П. П., Курс звёздной астрономии, 3 изд., М., 1954; Бок Б. Дж. и Бок П. Ф., Млечный путь, пер. с англ., М., 1959; Курс астрофизики и звездной астрономии, т. 2, М., 1962; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1966.

  Е. К. Харадзе.

Квазары

Квазары (англ. quasar, сокращенное от quasistellar radiosource), квазизвёздные объекты, квазизвёзды, сверхзвёзды, небесные объекты, имеющие сходство со звёздами по оптическому виду и с газовыми туманностями по характеру спектров, обнаруживающие, кроме того, значительные красные смещения (до 6 раз превышающие наибольшие из известных у галактик). Последнее свойство определяет важную роль К в астрофизике и космологии. Открытие К. явилось результатом повышения точности определения координат внегалактических источников радиоизлучения, позволившего значительно увеличить число радиоисточников, отождествленных с небесными объектами, видимыми в оптических лучах. Первое совпадение радиоисточника с звёздоподобным объектом было обнаружено в 1960, а в 1963, когда американский астроном М. Шмидт отождествил сдвинутые вследствие эффекта красного смещения линии в спектрах таких объектов, они были выделены в особый класс космических объектов — квазары. Т. о., первоначально были обнаружены К., являющиеся сильными радиоисточниками, но впоследствии были найдены К. также и со слабым радиоизлучением (около 98,8% всех К., доступных обнаружению). Эта многочисленная разновидность К. называлась радиоспокойными К., квазигалактиками (квазагами), интерлоперами, а иногда — голубыми звёздоподобными объектами. Полное число доступных наблюдениям К. составляет около 105, из них уже отождествлено с оптическими объектами около 1000, но достоверная принадлежность к К. по спектрам установлена лишь примерно для 200.

В спектрах К. обнаруживаются мощное ультрафиолетовое излучение и широкие яркие линии, характерные для горячих газовых туманностей (температура около 30 000 °C), но значительно сдвинутые в красную область спектра. При красных смещениях, превышающих 1,7, на снимках спектров К. становится видна даже резонансная линия водорода La 1216 . Изредка в спектрах К. наблюдаются узкие тёмные линии, обусловленные поглощением света в окружающем К. межгалактическом газе. На фотографиях К. имеют вид звёзд, т. о. их угловые диаметры менее 1², только ближайшие К. обнаруживают оптические особенности: эллиптическую форму звездообразного изображения, газовые выбросы. По сильному ультрафиолетовому излучению, характеризуемому голубыми показателями цвета, К. удаётся отличать на фотографиях от нормальных звёзд, а по избыточному инфракрасному излучению — от белых карликов, даже если К. не имеют радиоизлучения.

Вариации блеска многих К. являются, по-видимому, одним из фундаментальных свойств К. (кратчайшая вариация с периодом t " 1 ч, максимальные изменения блеска — в 25 раз). Поскольку размеры переменного по блеску объекта не могут превышать сt (с — скорость света), размеры К. не могут быть более 4×1012 м (менее диаметра орбиты Урана), и только при движении вещества со скоростью, близкой к скорости света, эти размеры могут быть больше. В отличие от непрерывного излучения, вариации интенсивности в спектральных линиях редки.

Как радиоисточники, К. сходны с радиогалактиками: у К. часто наблюдаются два, не обязательно одинаковых по интенсивности, протяжённых радиоисточника, находящихся на значительном расстоянии по разные стороны от оптического объекта. Механизм радиоизлучения и тех и других синхротронный (см. Синхротронное излучение). Но в К., кроме того, обнаружены компактные радиоисточники, порождающие вариации радиоизлучения на сантиметровых волнах; они представляют собой расширяющиеся облака релятивистских частиц, существующие несколько лет. Механизм их радиоизлучения связан, по-видимому, с плазменными колебаниями.

Природа К изучена ещё мало. В зависимости от толкований природы красного смещения в их спектрах обсуждаются три гипотезы (начало 70-х гг. 20 в.). Наиболее правдоподобна космологическаягипотеза, согласно которой большие красные смещения свидетельствуют о том,что К. находятся на огромных расстояниях (до 10 гигапарсек) и принимают участие в расширении Метагалактики. На этом предположении основаны определения расстояний до К. (по красным смещениям) и оценки их масс и светимостей, В космологической гипотезе К. по абсолютным звёздным величинам (—27) и массам (около 1038 кг, т. е. 108 масс Солнца) являются действительно сверхзвёздами. Физическая природа К. в этом случае связывается с гравитационным коллапсом массы газа (см. Коллапс гравитационный), который остановлен вследствие магнитной турбуленции или вращения К.

Большой расход энергии на все виды электромагнитного излучения при этой гипотезе ограничивает активную стадию К. 104 годами. По мощности радиоизлучения (~1012 вт) К. сравнимы с радиогалактиками. Предполагается, что К. являются сверхмассивными звёздами радиусом порядка 1012 м, плазма которых непрерывно, а также сильными взрывами выбрасывает потоки частиц различных энергий. В радиусе порядка 1016 м К. окружены облаками ионизованного газа, создающими яркие линии в спектрах К., а на расстояниях порядка 1019 м находятся облака релятивистских частиц, запертых в слабых магнитных полях, — радиоизлучающие области К.

Ближайшие К. находятся далее 200 мегапарсек. Относительные редкость и кратковременность их существования подтверждают предположение, что К. — это стадия эволюции крупных космическихмасс, например ядер галактик. Т. о., оказывается неслучайным сходство К. с N-галактиками, галактиками Сейферта и голубыми компактными галактиками по характеру спектров, вариациям блеска и радиоизлучения. Ближайшие К., у которых удалось рассмотреть на фотографиях структуру, оказались N-галактиками, на основании чего их объединили в один класс компактных сверхярких объектов. Загадочна природа объекта BL Ящерицы (и ещё нескольких), который по колебаниям блеска, радиоизлучению, показателям цвета и оптической структуре выглядит как типичный К., но в то же время не имеет в спектре никаких линий.

Согласно другой гипотезе, К. со скоростями, близкими к скорости света, разлетаются в результате взрыва в центре Галактики и выброса вещества массой около 1040 кг, происшедших несколько млн. лет назад. По этой гипотезе массы К. составляют 1031 кг (5 масс Солнца), а расстояния до них 60—600 килопарсек. Однако неизвестны физические процессы, которые могли бы дать необходимую для взрыва энергию (1058 дж).

В третьей гипотезе предполагается, что К. — компактные газовые объекты размерами 1016—1017 м и массами 1042—1043 кг, в спектрах которых линии имеют большие красные смещения гравитационного характера.

Лит.: Бербидж Дж. и Вербидж М., Квазары, пер. с англ., М., 1969.

  Ю. П. Псковский.

Пульсары

Пульсары (англ. pulsars, сокращенно от Pulsating Sources of Radioemission — пульсирующие источники радиоизлучения), слабые источники космического излучения, всплески которого следуют друг за другом с очень медленно изменяющимся периодом. Первый П. был открыт в 1967 в Великобритании; к 1975 известно уже около 100 объектов этого вида. По типу радиоизлучения П. отличаются от всех известных ранее источников космического радиоизлучения, характеризующихся либо постоянной интенсивностью (галактики или радиогалактики), либо нерегулярными всплесками радиоизлучения (Солнце, некоторые вспыхивающие звёзды).

Для известных П. значения периода (т. е. интервала времени между двумя последовательными всплесками излучения) заключены в интервале между 0,033 сек и 3,75 сек. Первые наблюдения П. свидетельствовали о чрезвычайно высоком постоянстве их периодов. Однако при последующих наблюдениях было установлено, что периоды П. очень медленно возрастают. Для большинства П. время, в течение которого период возрастает вдвое, совпадает по порядку величины с их возрастом и составляет миллионы и десятки миллионов лет. Однако имеются два П., у которых время удвоения периода существенно меньше, а именно: у П., находящегося внутри Крабовидной туманности, являющейся остатком взрыва Сверхновой 1054, период удваивается за 2400 лет, а у П. внутри сверхновой в созвездии Паруса — за 24 тыс. лет. Эти П. — самые молодые и имеют наиболее короткие периоды. Существование у них оболочек, характерных для сверхновых звёзд, свидетельствует в пользу того, что П. образуются в результате взрыва сверхновых. Отсутствие же таких оболочек у других, более старых П. объясняется, по-видимому, тем, что они уже успели рассеяться в пространстве. Интересная особенность молодых П. — внезапные скачкообразные уменьшения периода в результате бурных процессов, происходящих в них. Практически все П. наблюдаются только в радиодиапазоне электромагнитного излучения. Исключение составляет только П. в Крабовидной туманности, который можно наблюдать также в оптическом, рентгеновском и гамма-диапазонах.

Исследования радиоизлучения П. в диапазоне радиоволн с длиной от 10 см до 10 м позволили установить, что максимум излучения приходится, как правило, на метровые волны. Было также обнаружено, что один и тот же импульс на разных длинах волн регистрируется при наблюдениях не одновременно: сначала Земли достигает излучение с более короткой длиной волны, а затем — с более длинной. Это разделение всплеска радиоизлучения объясняется тем, что при распространении радиоволн в плазме, заполняющей межзвёздное пространство, скорость коротковолнового излучения близка к скорости света в вакууме, а для длинноволнового — заметно меньше. Т. о., время запаздывания импульса, наблюдаемого в двух несовпадающих длинах волн, пропорционально расстоянию до П. и средней концентрации электронов на луче зрения. Поскольку концентрация электронов на луче зрения известна, то, измерив поток радиоизлучения на Земле и установив время запаздывания, можно определить расстояние до П. и оценить мощность радиоизлучения. Оказалось, что расстояния до известных сейчас П. заключены в интервале от десятков пс до нескольких кпс, а мощность радиоизлучения каждого из них в миллионы раз больше радиоизлучения Солнца даже в периоды его бурной активности.

Наиболее вероятное объяснение П. даёт теория вращающегося "маяка". Согласно данной теории, П. представляет собой вращающуюся звезду, излучающую узкий пучок радиоволн. Наблюдатель, попадающий в этот пучок, видит периодически повторяющиеся импульсы радиоизлучения. В теории "маяка" период П. равен периоду вращения звезды; это объясняет высокое постоянство периодов П. Модель "маяка" объясняет и многие др. данные наблюдений, в частности медленное увеличение периода является следствием замедления вращения звезды. Однако возникли серьёзные затруднения с выбором класса звёзд, который мог бы обеспечить наблюдаемые явления. Для того чтобы обеспечить очень высокую угловую скорость вращения, характерную для П., звезда должна быть весьма компактной, иметь малые размеры. Белые и красные карлики (компактные звёзды) не могут иметь таких угловых скоростей вращения: они были бы немедленно разорваны центробежными силами. Единственным приемлемым классом звёзд оказался известный только на основании теоретических исследований класс нейтронных звёзд. Наблюдения П. явились, т. о., подтверждением существования нейтронных звёзд. Нейтронные звёзды характеризуются очень малыми размерами: диаметр нейтронной звезды с массой, равной примерно массе Солнца, составляет всего несколько десятков км. Плотность вещества внутри таких звёзд достигает 1014 —1015 г/см3, т. е. имеет порядок плотности вещества внутри атомных ядер. Нейтронная звезда — это как бы колоссальное атомное ядро, состоящее в основном из нейтронов. Источник энергии, излучаемой П., — кинетическая энергия вращения нейтронной звезды. Механизм излучения П. связан с существованием на их поверхности сильных магнитных полей с напряжённостью, достигающей тысяч млрд. э. Трансформация кинетической энергии вращения звезды в излучение происходит, по-видимому, вследствие того, что вращающаяся магнитная звезда индуцирует вокруг себя электрическое поле, ускоряющее частицы окружающей П. плазмы до высоких энергий. Эти ускоренные частицы и дают наблюдаемое излучение.

В 70-х гг. открыты П., излучающие главным образом в рентгеновском диапазоне. Эти П. оказались нейтронными звёздами, входящими в состав двойных звёздных систем. Второй компонент в этих системах — нормальная звезда. Газ из оболочки нормальной звезды течёт к нейтронной звезде, закручивается вокруг неё и в конце концов вдоль магнитных силовых линий поля нейтронной звезды падает на её поверхность. В результате возникает направленное рентгеновское излучение, которое и создаёт эффект пульсаций для наблюдателя, попадающего в пучок направленного излучения.

Лит.: Дайсон Ф., Тер-Хаар Д., Нейтронные звёзды и пульсары, пер. с англ., М., 1973.

В. В. Усов.